{"title":"基于卫星信息的电动汽车远程瞬时功耗估算","authors":"Franco Jorquera, Juan Estrada, Fernando Auat","doi":"10.3390/robotics12060151","DOIUrl":null,"url":null,"abstract":"Instantaneous Power Consumption (IPC) is relevant for understanding the autonomy and efficient energy usage of electric vehicles (EVs). However, effective vehicle management requires prior knowledge of whether they can complete a trajectory, necessitating an estimation of IPC consumption along it. This paper proposes an IPC estimation method for an EV based on satellite information. The methodology involves geolocation and georeferencing of the study area, trajectory planning, extracting altitude characteristics from the map to create an altitude profile, collecting terrain features, and ultimately calculating IPC. The most accurate estimation was achieved on clay terrain with a 5.43% error compared to measures. For pavement and gravel terrains, 19.19% and 102.02% errors were obtained, respectively. This methodology provides IPC estimation on three different terrains using satellite information, which is corroborated with field experiments. This showcases its potential for EV management in industrial contexts.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"343 2","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Instantaneous Power Consumption Estimation of Electric Vehicles from Satellite Information\",\"authors\":\"Franco Jorquera, Juan Estrada, Fernando Auat\",\"doi\":\"10.3390/robotics12060151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instantaneous Power Consumption (IPC) is relevant for understanding the autonomy and efficient energy usage of electric vehicles (EVs). However, effective vehicle management requires prior knowledge of whether they can complete a trajectory, necessitating an estimation of IPC consumption along it. This paper proposes an IPC estimation method for an EV based on satellite information. The methodology involves geolocation and georeferencing of the study area, trajectory planning, extracting altitude characteristics from the map to create an altitude profile, collecting terrain features, and ultimately calculating IPC. The most accurate estimation was achieved on clay terrain with a 5.43% error compared to measures. For pavement and gravel terrains, 19.19% and 102.02% errors were obtained, respectively. This methodology provides IPC estimation on three different terrains using satellite information, which is corroborated with field experiments. This showcases its potential for EV management in industrial contexts.\",\"PeriodicalId\":37568,\"journal\":{\"name\":\"Robotics\",\"volume\":\"343 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics12060151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Remote Instantaneous Power Consumption Estimation of Electric Vehicles from Satellite Information
Instantaneous Power Consumption (IPC) is relevant for understanding the autonomy and efficient energy usage of electric vehicles (EVs). However, effective vehicle management requires prior knowledge of whether they can complete a trajectory, necessitating an estimation of IPC consumption along it. This paper proposes an IPC estimation method for an EV based on satellite information. The methodology involves geolocation and georeferencing of the study area, trajectory planning, extracting altitude characteristics from the map to create an altitude profile, collecting terrain features, and ultimately calculating IPC. The most accurate estimation was achieved on clay terrain with a 5.43% error compared to measures. For pavement and gravel terrains, 19.19% and 102.02% errors were obtained, respectively. This methodology provides IPC estimation on three different terrains using satellite information, which is corroborated with field experiments. This showcases its potential for EV management in industrial contexts.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM