Christophe Béné, Timothy R. Frankenberger, Suzanne Nelson, Mark Alexander Constas, Gregory Collins, Mark Langworthy, Karyn Fox
{"title":"粮食系统复原力衡量:原则、框架和注意事项","authors":"Christophe Béné, Timothy R. Frankenberger, Suzanne Nelson, Mark Alexander Constas, Gregory Collins, Mark Langworthy, Karyn Fox","doi":"10.1007/s12571-023-01407-y","DOIUrl":null,"url":null,"abstract":"<div><p>There is growing recognition that a better understanding of how food systems respond to crises is critical to build and protect the food security of local populations. But rigorous and reliable methods to measure food system resilience are still missing. In this paper, we build on the current literature to develop an analytical framework aimed at assessing the resilience of food systems at local level. The novel element of the analysis lies in the levels at which resilience is considered. Combining the individual actor level with the notion of 'emergent properties' of food systems, we argue that the overall resilience of food system results from processes that take place – and need to be measured – at both individual and system levels. The framework is structured around three components: (i) the mapping of the actors and the local food system; (ii) the assessment of the resilience of these actors and that of the food system, and (iii) the outcomes of this resilience, assessed in term of local population’s food security. For each of those components, indicators are proposed and the ways to collect them are discussed. The paper then presents the types of analyses that would be necessary to complete to gain a better understanding of the situation regarding the resilience of the local food system under consideration, including the analysis of “positive deviance” among food system actors. The paper concludes with a series of reflections about the caveats and challenges that one may face when attempting to assess food system resilience.</p></div>","PeriodicalId":567,"journal":{"name":"Food Security","volume":"15 6","pages":"1437 - 1458"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12571-023-01407-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Food system resilience measurement: principles, framework and caveats\",\"authors\":\"Christophe Béné, Timothy R. Frankenberger, Suzanne Nelson, Mark Alexander Constas, Gregory Collins, Mark Langworthy, Karyn Fox\",\"doi\":\"10.1007/s12571-023-01407-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is growing recognition that a better understanding of how food systems respond to crises is critical to build and protect the food security of local populations. But rigorous and reliable methods to measure food system resilience are still missing. In this paper, we build on the current literature to develop an analytical framework aimed at assessing the resilience of food systems at local level. The novel element of the analysis lies in the levels at which resilience is considered. Combining the individual actor level with the notion of 'emergent properties' of food systems, we argue that the overall resilience of food system results from processes that take place – and need to be measured – at both individual and system levels. The framework is structured around three components: (i) the mapping of the actors and the local food system; (ii) the assessment of the resilience of these actors and that of the food system, and (iii) the outcomes of this resilience, assessed in term of local population’s food security. For each of those components, indicators are proposed and the ways to collect them are discussed. The paper then presents the types of analyses that would be necessary to complete to gain a better understanding of the situation regarding the resilience of the local food system under consideration, including the analysis of “positive deviance” among food system actors. The paper concludes with a series of reflections about the caveats and challenges that one may face when attempting to assess food system resilience.</p></div>\",\"PeriodicalId\":567,\"journal\":{\"name\":\"Food Security\",\"volume\":\"15 6\",\"pages\":\"1437 - 1458\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12571-023-01407-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12571-023-01407-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Security","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12571-023-01407-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Food system resilience measurement: principles, framework and caveats
There is growing recognition that a better understanding of how food systems respond to crises is critical to build and protect the food security of local populations. But rigorous and reliable methods to measure food system resilience are still missing. In this paper, we build on the current literature to develop an analytical framework aimed at assessing the resilience of food systems at local level. The novel element of the analysis lies in the levels at which resilience is considered. Combining the individual actor level with the notion of 'emergent properties' of food systems, we argue that the overall resilience of food system results from processes that take place – and need to be measured – at both individual and system levels. The framework is structured around three components: (i) the mapping of the actors and the local food system; (ii) the assessment of the resilience of these actors and that of the food system, and (iii) the outcomes of this resilience, assessed in term of local population’s food security. For each of those components, indicators are proposed and the ways to collect them are discussed. The paper then presents the types of analyses that would be necessary to complete to gain a better understanding of the situation regarding the resilience of the local food system under consideration, including the analysis of “positive deviance” among food system actors. The paper concludes with a series of reflections about the caveats and challenges that one may face when attempting to assess food system resilience.
期刊介绍:
Food Security is a wide audience, interdisciplinary, international journal dedicated to the procurement, access (economic and physical), and quality of food, in all its dimensions. Scales range from the individual to communities, and to the world food system. We strive to publish high-quality scientific articles, where quality includes, but is not limited to, the quality and clarity of text, and the validity of methods and approaches.
Food Security is the initiative of a distinguished international group of scientists from different disciplines who hold a deep concern for the challenge of global food security, together with a vision of the power of shared knowledge as a means of meeting that challenge. To address the challenge of global food security, the journal seeks to address the constraints - physical, biological and socio-economic - which not only limit food production but also the ability of people to access a healthy diet.
From this perspective, the journal covers the following areas:
Global food needs: the mismatch between population and the ability to provide adequate nutrition
Global food potential and global food production
Natural constraints to satisfying global food needs:
§ Climate, climate variability, and climate change
§ Desertification and flooding
§ Natural disasters
§ Soils, soil quality and threats to soils, edaphic and other abiotic constraints to production
§ Biotic constraints to production, pathogens, pests, and weeds in their effects on sustainable production
The sociological contexts of food production, access, quality, and consumption.
Nutrition, food quality and food safety.
Socio-political factors that impinge on the ability to satisfy global food needs:
§ Land, agricultural and food policy
§ International relations and trade
§ Access to food
§ Financial policy
§ Wars and ethnic unrest
Research policies and priorities to ensure food security in its various dimensions.