None Chuan-Pin Lu, None Yan-Long Huang, None Po-Jen Lai
{"title":"基于深度学习边缘计算的捻纱异常张力模式识别模块的开发","authors":"None Chuan-Pin Lu, None Yan-Long Huang, None Po-Jen Lai","doi":"10.46604/ijeti.2023.11158","DOIUrl":null,"url":null,"abstract":"This study aims to develop an artificial intelligence module for recognizing abnormal tension in textile weaving, The module can be used to address the time-consuming and inaccurate issues associated with traditional manual methods. Long short-term memory (LSTM) recurrent neural networks as the algorithm for identifying different types of abnormal tension are employed in this module. This study focuses on training and validating the model using five common patterns. Additionally, an approach involving the integration of plug-in modules and edge computing in deep learning is employed to achieve the research objectives without altering the original system architecture. Multiple experiments were conducted to search for the optimal model parameters. According to the experimental results, the average recognition rate for abnormal tension is 97.12%, with an average computation time of 46.2 milliseconds per sample. The results indicate that the recognition accuracy and computation time meet the practical performance requirements of the system.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the Abnormal Tension Pattern Recognition Module for Twisted Yarn Based on Deep Learning Edge Computing\",\"authors\":\"None Chuan-Pin Lu, None Yan-Long Huang, None Po-Jen Lai\",\"doi\":\"10.46604/ijeti.2023.11158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to develop an artificial intelligence module for recognizing abnormal tension in textile weaving, The module can be used to address the time-consuming and inaccurate issues associated with traditional manual methods. Long short-term memory (LSTM) recurrent neural networks as the algorithm for identifying different types of abnormal tension are employed in this module. This study focuses on training and validating the model using five common patterns. Additionally, an approach involving the integration of plug-in modules and edge computing in deep learning is employed to achieve the research objectives without altering the original system architecture. Multiple experiments were conducted to search for the optimal model parameters. According to the experimental results, the average recognition rate for abnormal tension is 97.12%, with an average computation time of 46.2 milliseconds per sample. The results indicate that the recognition accuracy and computation time meet the practical performance requirements of the system.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.11158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.11158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of the Abnormal Tension Pattern Recognition Module for Twisted Yarn Based on Deep Learning Edge Computing
This study aims to develop an artificial intelligence module for recognizing abnormal tension in textile weaving, The module can be used to address the time-consuming and inaccurate issues associated with traditional manual methods. Long short-term memory (LSTM) recurrent neural networks as the algorithm for identifying different types of abnormal tension are employed in this module. This study focuses on training and validating the model using five common patterns. Additionally, an approach involving the integration of plug-in modules and edge computing in deep learning is employed to achieve the research objectives without altering the original system architecture. Multiple experiments were conducted to search for the optimal model parameters. According to the experimental results, the average recognition rate for abnormal tension is 97.12%, with an average computation time of 46.2 milliseconds per sample. The results indicate that the recognition accuracy and computation time meet the practical performance requirements of the system.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.