{"title":"用于疟疾检测的二维gaas光子晶体生物传感器","authors":"None Manjunatha N, None Sarika Raga, None Sanjay Kumar Gowre, None Hameed Miyan","doi":"10.46604/ijeti.2023.11660","DOIUrl":null,"url":null,"abstract":"Gallium arsenide (GaAs) composite semi-conductive rods with an air background lattice act as the building blocks for the photonic crystal structure used of a biosensor. The study presents a biosensor of a two-rod nano-cavity for identifying distinct stages of plasmodium falciparum in red blood cells (RBCs) in the early detection of malaria. The proposed biosensor enables the creation of a label-free biosensing environment in which optical and dispersion properties are investigated using plane wave expansion (PWE) and finite-difference time-domain (FDTD) techniques. The biosensor, with a sensing region for an analyte, is utilized to detect a change in refractive index to differentiate between normal RBCs and plasmodium falciparum-infected cells. The results show that the biosensor has a high sensitivity of 798.143 nm/RIU, a high Q-factor of 9881.926, a low detection limit (δ) of 222.4 × 10-6 RIU, a high FOM of 4496.079 RIU-1, and a compact area of 46.14 µm2.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"58 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2D GaAs-Based Photonic Crystal Biosensor for Malaria Detection\",\"authors\":\"None Manjunatha N, None Sarika Raga, None Sanjay Kumar Gowre, None Hameed Miyan\",\"doi\":\"10.46604/ijeti.2023.11660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium arsenide (GaAs) composite semi-conductive rods with an air background lattice act as the building blocks for the photonic crystal structure used of a biosensor. The study presents a biosensor of a two-rod nano-cavity for identifying distinct stages of plasmodium falciparum in red blood cells (RBCs) in the early detection of malaria. The proposed biosensor enables the creation of a label-free biosensing environment in which optical and dispersion properties are investigated using plane wave expansion (PWE) and finite-difference time-domain (FDTD) techniques. The biosensor, with a sensing region for an analyte, is utilized to detect a change in refractive index to differentiate between normal RBCs and plasmodium falciparum-infected cells. The results show that the biosensor has a high sensitivity of 798.143 nm/RIU, a high Q-factor of 9881.926, a low detection limit (δ) of 222.4 × 10-6 RIU, a high FOM of 4496.079 RIU-1, and a compact area of 46.14 µm2.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.11660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.11660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A 2D GaAs-Based Photonic Crystal Biosensor for Malaria Detection
Gallium arsenide (GaAs) composite semi-conductive rods with an air background lattice act as the building blocks for the photonic crystal structure used of a biosensor. The study presents a biosensor of a two-rod nano-cavity for identifying distinct stages of plasmodium falciparum in red blood cells (RBCs) in the early detection of malaria. The proposed biosensor enables the creation of a label-free biosensing environment in which optical and dispersion properties are investigated using plane wave expansion (PWE) and finite-difference time-domain (FDTD) techniques. The biosensor, with a sensing region for an analyte, is utilized to detect a change in refractive index to differentiate between normal RBCs and plasmodium falciparum-infected cells. The results show that the biosensor has a high sensitivity of 798.143 nm/RIU, a high Q-factor of 9881.926, a low detection limit (δ) of 222.4 × 10-6 RIU, a high FOM of 4496.079 RIU-1, and a compact area of 46.14 µm2.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.