Yan Zhang, Ning Xu, Chunyu Yan, Xuelian Zhou, Qinglong Qiao, Lu Miao* and Zhaochao Xu*,
{"title":"利用活细胞成像技术,通过染料自标记解析盐诱导的 FUS 蛋白液-液相分离现象","authors":"Yan Zhang, Ning Xu, Chunyu Yan, Xuelian Zhou, Qinglong Qiao, Lu Miao* and Zhaochao Xu*, ","doi":"10.1021/cbmi.3c00094","DOIUrl":null,"url":null,"abstract":"<p >The aggregation of fusion in sarcoma (FUS) in the cytoplasm and nucleus is a pathological feature of Amyotrophic lateral sclerosis (ALS) and Frontotemporal Dementia (FTD). Genetic mutations, abnormal protein synthesis, environmental stress, and aging have all been implicated as causative factors in this process. Salt ions are essential to many physiological processes in the body, and the imbalance of them is an important environmental stress factor in cells. However, their effect on liquid–liquid phase separation (LLPS) of FUS proteins in living cells is not well understood. Here, we map the various salt-induced LLPS of FUS in living cells by genetically coding and self-labeling FUS with organic dyes. The brightness and photostability of the dyes enable long-term imaging to track the mechanism of the assembly and disappearance of FUS phase separation. The FUS protein showed a better phase separation tendency under 0.3 M salt stimulation, and there was a large amount of FUS shuttling from the nucleus to the cytoplasm. At this concentration, various salt solutions displayed different effects on the phase separation of FUS protein, following the Hofmeister effects. We further observed that the assembly of FUS droplets underwent a process of rapid formation of small droplets, plateaus, and mutual fusion. Strikingly, The CsCl-stimulated FUS droplets were not completely reversible after washing, and some solid-like granules remained in the nucleus. Taken together, these results help broaden our understanding of the LLPS of FUS proteins in cellular stress responses.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 1","pages":"70–80"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00094","citationCount":"0","resultStr":"{\"title\":\"Live-Cell Imaging to Resolve Salt-Induced Liquid–Liquid Phase Separation of FUS Protein by Dye Self-Labeling\",\"authors\":\"Yan Zhang, Ning Xu, Chunyu Yan, Xuelian Zhou, Qinglong Qiao, Lu Miao* and Zhaochao Xu*, \",\"doi\":\"10.1021/cbmi.3c00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The aggregation of fusion in sarcoma (FUS) in the cytoplasm and nucleus is a pathological feature of Amyotrophic lateral sclerosis (ALS) and Frontotemporal Dementia (FTD). Genetic mutations, abnormal protein synthesis, environmental stress, and aging have all been implicated as causative factors in this process. Salt ions are essential to many physiological processes in the body, and the imbalance of them is an important environmental stress factor in cells. However, their effect on liquid–liquid phase separation (LLPS) of FUS proteins in living cells is not well understood. Here, we map the various salt-induced LLPS of FUS in living cells by genetically coding and self-labeling FUS with organic dyes. The brightness and photostability of the dyes enable long-term imaging to track the mechanism of the assembly and disappearance of FUS phase separation. The FUS protein showed a better phase separation tendency under 0.3 M salt stimulation, and there was a large amount of FUS shuttling from the nucleus to the cytoplasm. At this concentration, various salt solutions displayed different effects on the phase separation of FUS protein, following the Hofmeister effects. We further observed that the assembly of FUS droplets underwent a process of rapid formation of small droplets, plateaus, and mutual fusion. Strikingly, The CsCl-stimulated FUS droplets were not completely reversible after washing, and some solid-like granules remained in the nucleus. Taken together, these results help broaden our understanding of the LLPS of FUS proteins in cellular stress responses.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 1\",\"pages\":\"70–80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.3c00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Live-Cell Imaging to Resolve Salt-Induced Liquid–Liquid Phase Separation of FUS Protein by Dye Self-Labeling
The aggregation of fusion in sarcoma (FUS) in the cytoplasm and nucleus is a pathological feature of Amyotrophic lateral sclerosis (ALS) and Frontotemporal Dementia (FTD). Genetic mutations, abnormal protein synthesis, environmental stress, and aging have all been implicated as causative factors in this process. Salt ions are essential to many physiological processes in the body, and the imbalance of them is an important environmental stress factor in cells. However, their effect on liquid–liquid phase separation (LLPS) of FUS proteins in living cells is not well understood. Here, we map the various salt-induced LLPS of FUS in living cells by genetically coding and self-labeling FUS with organic dyes. The brightness and photostability of the dyes enable long-term imaging to track the mechanism of the assembly and disappearance of FUS phase separation. The FUS protein showed a better phase separation tendency under 0.3 M salt stimulation, and there was a large amount of FUS shuttling from the nucleus to the cytoplasm. At this concentration, various salt solutions displayed different effects on the phase separation of FUS protein, following the Hofmeister effects. We further observed that the assembly of FUS droplets underwent a process of rapid formation of small droplets, plateaus, and mutual fusion. Strikingly, The CsCl-stimulated FUS droplets were not completely reversible after washing, and some solid-like granules remained in the nucleus. Taken together, these results help broaden our understanding of the LLPS of FUS proteins in cellular stress responses.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging