{"title":"卵巢功能","authors":"Colin Defant","doi":"10.1007/s00454-023-00488-y","DOIUrl":null,"url":null,"abstract":"Abstract We introduce tools from discrete convexity theory and polyhedral geometry into the theory of West’s stack-sorting map s . Associated to each permutation $$\\pi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>π</mml:mi> </mml:math> is a particular set $$\\mathcal V(\\pi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of integer compositions that appears in a formula for the fertility of $$\\pi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>π</mml:mi> </mml:math> , which is defined to be $$|s^{-1}(\\pi )|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . These compositions also feature prominently in more general formulas involving families of colored binary plane trees called troupes and in a formula that converts from free to classical cumulants in noncommutative probability theory. We show that $$\\mathcal V(\\pi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is a transversal discrete polymatroid when it is nonempty. We define the fertilitope of $$\\pi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>π</mml:mi> </mml:math> to be the convex hull of $$\\mathcal V(\\pi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and we prove a surprisingly simple characterization of fertilitopes as nestohedra arising from full binary plane trees. Using known facts about nestohedra, we provide a procedure for describing the structure of the fertilitope of $$\\pi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>π</mml:mi> </mml:math> directly from $$\\pi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>π</mml:mi> </mml:math> using Bousquet-Mélou’s notion of the canonical tree of $$\\pi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>π</mml:mi> </mml:math> . As a byproduct, we obtain a new combinatorial cumulant conversion formula in terms of generalizations of canonical trees that we call quasicanonical trees . We also apply our results on fertilitopes to study combinatorial properties of the stack-sorting map. In particular, we show that the set of fertility numbers has density 1, and we determine all infertility numbers of size at most 126. Finally, we reformulate the conjecture that $$\\sum _{\\sigma \\in s^{-1}(\\pi )}x^{\\textrm{des}(\\sigma )+1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:msub> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow> <mml:mtext>des</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>σ</mml:mi> <mml:mo>)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> is always real-rooted in terms of nestohedra, and we propose natural ways in which this new version of the conjecture could be extended.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fertilitopes\",\"authors\":\"Colin Defant\",\"doi\":\"10.1007/s00454-023-00488-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce tools from discrete convexity theory and polyhedral geometry into the theory of West’s stack-sorting map s . Associated to each permutation $$\\\\pi $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>π</mml:mi> </mml:math> is a particular set $$\\\\mathcal V(\\\\pi )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of integer compositions that appears in a formula for the fertility of $$\\\\pi $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>π</mml:mi> </mml:math> , which is defined to be $$|s^{-1}(\\\\pi )|$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msup> <mml:mi>s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . These compositions also feature prominently in more general formulas involving families of colored binary plane trees called troupes and in a formula that converts from free to classical cumulants in noncommutative probability theory. We show that $$\\\\mathcal V(\\\\pi )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is a transversal discrete polymatroid when it is nonempty. We define the fertilitope of $$\\\\pi $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>π</mml:mi> </mml:math> to be the convex hull of $$\\\\mathcal V(\\\\pi )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and we prove a surprisingly simple characterization of fertilitopes as nestohedra arising from full binary plane trees. Using known facts about nestohedra, we provide a procedure for describing the structure of the fertilitope of $$\\\\pi $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>π</mml:mi> </mml:math> directly from $$\\\\pi $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>π</mml:mi> </mml:math> using Bousquet-Mélou’s notion of the canonical tree of $$\\\\pi $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>π</mml:mi> </mml:math> . As a byproduct, we obtain a new combinatorial cumulant conversion formula in terms of generalizations of canonical trees that we call quasicanonical trees . We also apply our results on fertilitopes to study combinatorial properties of the stack-sorting map. In particular, we show that the set of fertility numbers has density 1, and we determine all infertility numbers of size at most 126. Finally, we reformulate the conjecture that $$\\\\sum _{\\\\sigma \\\\in s^{-1}(\\\\pi )}x^{\\\\textrm{des}(\\\\sigma )+1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>s</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:msub> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow> <mml:mtext>des</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>σ</mml:mi> <mml:mo>)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> is always real-rooted in terms of nestohedra, and we propose natural ways in which this new version of the conjecture could be extended.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00488-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00488-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
摘要将离散凸性理论和多面体几何中的工具引入到韦斯特的堆-排序映射理论中。与每个排列$$\pi $$ π相关联的是一个特定的整数组合集$$\mathcal V(\pi )$$ V (π),它出现在$$\pi $$ π的可育性公式中,定义为$$|s^{-1}(\pi )|$$ | s - 1 (π) |。这些组合在更一般的公式中也有突出的特点,这些公式涉及称为群的彩色二叉平面树族,以及在非交换概率论中从自由累积量转换为经典累积量的公式。我们证明了$$\mathcal V(\pi )$$ V (π)在非空时是一个横向离散多矩阵。我们定义了$$\pi $$ π的可育性为$$\mathcal V(\pi )$$ V (π)的凸壳,并证明了可育性的一个出奇简单的性质是由满二叉平面树产生的巢面体。利用已知的关于巢面体的事实,我们利用bousquet - msamulou的$$\pi $$ π正则树的概念,提供了一个直接从$$\pi $$ π描述$$\pi $$ π的可育性结构的过程。作为一个副产品,我们得到了一个新的组合累积量转换公式,它是正则树的推广,我们称之为准正则树。我们也将我们的结果应用于育肥力上,来研究堆-排序映射的组合性质。特别地,我们证明了生育数集合的密度为1,并且我们确定了所有生育数的大小不超过126。最后,我们重新表述了$$\sum _{\sigma \in s^{-1}(\pi )}x^{\textrm{des}(\sigma )+1}$$∑σ∈s - 1 (π) x des (σ) + 1在巢面上总是实根的猜想,并提出了该猜想的自然推广方法。
Abstract We introduce tools from discrete convexity theory and polyhedral geometry into the theory of West’s stack-sorting map s . Associated to each permutation $$\pi $$ π is a particular set $$\mathcal V(\pi )$$ V(π) of integer compositions that appears in a formula for the fertility of $$\pi $$ π , which is defined to be $$|s^{-1}(\pi )|$$ |s-1(π)| . These compositions also feature prominently in more general formulas involving families of colored binary plane trees called troupes and in a formula that converts from free to classical cumulants in noncommutative probability theory. We show that $$\mathcal V(\pi )$$ V(π) is a transversal discrete polymatroid when it is nonempty. We define the fertilitope of $$\pi $$ π to be the convex hull of $$\mathcal V(\pi )$$ V(π) , and we prove a surprisingly simple characterization of fertilitopes as nestohedra arising from full binary plane trees. Using known facts about nestohedra, we provide a procedure for describing the structure of the fertilitope of $$\pi $$ π directly from $$\pi $$ π using Bousquet-Mélou’s notion of the canonical tree of $$\pi $$ π . As a byproduct, we obtain a new combinatorial cumulant conversion formula in terms of generalizations of canonical trees that we call quasicanonical trees . We also apply our results on fertilitopes to study combinatorial properties of the stack-sorting map. In particular, we show that the set of fertility numbers has density 1, and we determine all infertility numbers of size at most 126. Finally, we reformulate the conjecture that $$\sum _{\sigma \in s^{-1}(\pi )}x^{\textrm{des}(\sigma )+1}$$ ∑σ∈s-1(π)xdes(σ)+1 is always real-rooted in terms of nestohedra, and we propose natural ways in which this new version of the conjecture could be extended.