Julian Büchel;Athanasios Vasilopoulos;Benedikt Kersting;Corey Lammie;Kevin Brew;Timothy Philip;Nicole Saulnier;Vijay Narayanan;Manuel Le Gallo;Abu Sebastian
{"title":"通过直接最小化矩阵-矢量乘法误差为模拟内存计算内核编程权重","authors":"Julian Büchel;Athanasios Vasilopoulos;Benedikt Kersting;Corey Lammie;Kevin Brew;Timothy Philip;Nicole Saulnier;Vijay Narayanan;Manuel Le Gallo;Abu Sebastian","doi":"10.1109/JETCAS.2023.3329449","DOIUrl":null,"url":null,"abstract":"Accurate programming of non-volatile memory (NVM) devices in analog in-memory computing (AIMC) cores is critical to achieve high matrix-vector multiplication (MVM) accuracy during deep learning inference workloads. In this paper, we propose a novel programming approach that directly minimizes the MVM error by performing stochastic gradient descent optimization with synthetic random input data. The MVM error is significantly reduced compared to the conventional unit-cell by unit-cell iterative programming. We demonstrate that the optimal hyperparameters in our method are agnostic to the weights being programmed, enabling large-scale deployment across multiple AIMC cores without further fine tuning. It also eliminates the need for high-resolution analog to digital converters (ADCs) to decipher the small unit-cell conductance during programming. We experimentally validate this approach by demonstrating an inference accuracy increase of 1.26% on ResNet-9. The experiments were performed using phase change memory (PCM)-based AIMC cores fabricated in 14nm CMOS technology.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"13 4","pages":"1052-1061"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programming Weights to Analog In-Memory Computing Cores by Direct Minimization of the Matrix-Vector Multiplication Error\",\"authors\":\"Julian Büchel;Athanasios Vasilopoulos;Benedikt Kersting;Corey Lammie;Kevin Brew;Timothy Philip;Nicole Saulnier;Vijay Narayanan;Manuel Le Gallo;Abu Sebastian\",\"doi\":\"10.1109/JETCAS.2023.3329449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate programming of non-volatile memory (NVM) devices in analog in-memory computing (AIMC) cores is critical to achieve high matrix-vector multiplication (MVM) accuracy during deep learning inference workloads. In this paper, we propose a novel programming approach that directly minimizes the MVM error by performing stochastic gradient descent optimization with synthetic random input data. The MVM error is significantly reduced compared to the conventional unit-cell by unit-cell iterative programming. We demonstrate that the optimal hyperparameters in our method are agnostic to the weights being programmed, enabling large-scale deployment across multiple AIMC cores without further fine tuning. It also eliminates the need for high-resolution analog to digital converters (ADCs) to decipher the small unit-cell conductance during programming. We experimentally validate this approach by demonstrating an inference accuracy increase of 1.26% on ResNet-9. The experiments were performed using phase change memory (PCM)-based AIMC cores fabricated in 14nm CMOS technology.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"13 4\",\"pages\":\"1052-1061\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10304185/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10304185/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Programming Weights to Analog In-Memory Computing Cores by Direct Minimization of the Matrix-Vector Multiplication Error
Accurate programming of non-volatile memory (NVM) devices in analog in-memory computing (AIMC) cores is critical to achieve high matrix-vector multiplication (MVM) accuracy during deep learning inference workloads. In this paper, we propose a novel programming approach that directly minimizes the MVM error by performing stochastic gradient descent optimization with synthetic random input data. The MVM error is significantly reduced compared to the conventional unit-cell by unit-cell iterative programming. We demonstrate that the optimal hyperparameters in our method are agnostic to the weights being programmed, enabling large-scale deployment across multiple AIMC cores without further fine tuning. It also eliminates the need for high-resolution analog to digital converters (ADCs) to decipher the small unit-cell conductance during programming. We experimentally validate this approach by demonstrating an inference accuracy increase of 1.26% on ResNet-9. The experiments were performed using phase change memory (PCM)-based AIMC cores fabricated in 14nm CMOS technology.
期刊介绍:
The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.