结的连通和的伴随Reidemeister扭转

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2023-09-15 DOI:10.4171/qt/180
Joan Porti, Seokbeom Yoon
{"title":"结的连通和的伴随Reidemeister扭转","authors":"Joan Porti, Seokbeom Yoon","doi":"10.4171/qt/180","DOIUrl":null,"url":null,"abstract":"Let $K$ be the connected sum of knots $K\\_1,\\ldots,K\\_n$. It is known that the $\\mathrm{SL}\\_2(\\mathbb{C})$-character variety of the knot exterior of $K$ has a component of dimension $\\geq 2$ as the connected sum admits a so-called bending. We show that there is a natural way to define the adjoint Reidemeister torsion for such a high-dimensional component and prove that it is locally constant on a subset of the character variety where the trace of a meridian is constant. We also prove that the adjoint Reidemeister torsion of $K$ satisfies the vanishing identity if each $K\\_i$ does so.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"176 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The adjoint Reidemeister torsion for the connected sum of knots\",\"authors\":\"Joan Porti, Seokbeom Yoon\",\"doi\":\"10.4171/qt/180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be the connected sum of knots $K\\\\_1,\\\\ldots,K\\\\_n$. It is known that the $\\\\mathrm{SL}\\\\_2(\\\\mathbb{C})$-character variety of the knot exterior of $K$ has a component of dimension $\\\\geq 2$ as the connected sum admits a so-called bending. We show that there is a natural way to define the adjoint Reidemeister torsion for such a high-dimensional component and prove that it is locally constant on a subset of the character variety where the trace of a meridian is constant. We also prove that the adjoint Reidemeister torsion of $K$ satisfies the vanishing identity if each $K\\\\_i$ does so.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/180\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/qt/180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$K$为结点的连通和$K\_1,\ldots,K\_n$。已知$K$的结外部的$\mathrm{SL}\_2(\mathbb{C})$ -字符变化具有一个维度为$\geq 2$的分量,因为连接和允许所谓的弯曲。我们证明了有一种自然的方法来定义这种高维分量的伴随Reidemeister扭转,并证明了它在子午线迹为常数的特征变化子集上是局部常数。我们还证明了$K$的伴随Reidemeister扭转满足消失恒等式,如果每个$K\_i$都满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The adjoint Reidemeister torsion for the connected sum of knots
Let $K$ be the connected sum of knots $K\_1,\ldots,K\_n$. It is known that the $\mathrm{SL}\_2(\mathbb{C})$-character variety of the knot exterior of $K$ has a component of dimension $\geq 2$ as the connected sum admits a so-called bending. We show that there is a natural way to define the adjoint Reidemeister torsion for such a high-dimensional component and prove that it is locally constant on a subset of the character variety where the trace of a meridian is constant. We also prove that the adjoint Reidemeister torsion of $K$ satisfies the vanishing identity if each $K\_i$ does so.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信