{"title":"在道德教育和发展研究中使用大型语言模型的潜在好处","authors":"Han, Hyemin","doi":"10.1080/03057240.2023.2250570","DOIUrl":null,"url":null,"abstract":"Recently, computer scientists have developed large language models (LLMs) by training prediction models with large-scale language corpora and human reinforcements. The LLMs have become one promising way to implement artificial intelligence with accuracy in various fields. Interestingly, recent LLMs possess emergent functional features that emulate sophisticated human cognition, especially in-context learning and the chain of thought, which were unavailable in previous prediction models. In this paper, I will examine how LLMs might contribute to moral education and development research. To achieve this goal, I will review the most recently published conference papers and ArXiv preprints to overview the novel functional features implemented in LLMs. I also intend to conduct brief experiments with ChatGPT to investigate how LLMs behave while addressing ethical dilemmas and external feedback. The results suggest that LLMs might be capable of solving dilemmas based on reasoning and revising their reasoning process with external input. Furthermore, a preliminary experimental result from the moral exemplar test may demonstrate that exemplary stories can elicit moral elevation in LLMs as do they among human participants. I will discuss the potential implications of LLMs on research on moral education and development with the results.","PeriodicalId":47410,"journal":{"name":"Journal of Moral Education","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential benefits of employing large language models in research in moral education and development\",\"authors\":\"Han, Hyemin\",\"doi\":\"10.1080/03057240.2023.2250570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, computer scientists have developed large language models (LLMs) by training prediction models with large-scale language corpora and human reinforcements. The LLMs have become one promising way to implement artificial intelligence with accuracy in various fields. Interestingly, recent LLMs possess emergent functional features that emulate sophisticated human cognition, especially in-context learning and the chain of thought, which were unavailable in previous prediction models. In this paper, I will examine how LLMs might contribute to moral education and development research. To achieve this goal, I will review the most recently published conference papers and ArXiv preprints to overview the novel functional features implemented in LLMs. I also intend to conduct brief experiments with ChatGPT to investigate how LLMs behave while addressing ethical dilemmas and external feedback. The results suggest that LLMs might be capable of solving dilemmas based on reasoning and revising their reasoning process with external input. Furthermore, a preliminary experimental result from the moral exemplar test may demonstrate that exemplary stories can elicit moral elevation in LLMs as do they among human participants. I will discuss the potential implications of LLMs on research on moral education and development with the results.\",\"PeriodicalId\":47410,\"journal\":{\"name\":\"Journal of Moral Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Moral Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03057240.2023.2250570\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Moral Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03057240.2023.2250570","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Potential benefits of employing large language models in research in moral education and development
Recently, computer scientists have developed large language models (LLMs) by training prediction models with large-scale language corpora and human reinforcements. The LLMs have become one promising way to implement artificial intelligence with accuracy in various fields. Interestingly, recent LLMs possess emergent functional features that emulate sophisticated human cognition, especially in-context learning and the chain of thought, which were unavailable in previous prediction models. In this paper, I will examine how LLMs might contribute to moral education and development research. To achieve this goal, I will review the most recently published conference papers and ArXiv preprints to overview the novel functional features implemented in LLMs. I also intend to conduct brief experiments with ChatGPT to investigate how LLMs behave while addressing ethical dilemmas and external feedback. The results suggest that LLMs might be capable of solving dilemmas based on reasoning and revising their reasoning process with external input. Furthermore, a preliminary experimental result from the moral exemplar test may demonstrate that exemplary stories can elicit moral elevation in LLMs as do they among human participants. I will discuss the potential implications of LLMs on research on moral education and development with the results.
期刊介绍:
The Journal of Moral Education (a Charitable Company Limited by Guarantee) provides a unique interdisciplinary forum for consideration of all aspects of moral education and development across the lifespan. It contains philosophical analyses, reports of empirical research and evaluation of educational strategies which address a range of value issues and the process of valuing, in theory and practice, and also at the social and individual level. The journal regularly includes country based state-of-the-art papers on moral education and publishes special issues on particular topics.