雏菊Turán密度的下界

IF 0.7 4区 数学 Q2 MATHEMATICS
David Ellis, Dylan King
{"title":"雏菊Turán密度的下界","authors":"David Ellis, Dylan King","doi":"10.37236/11206","DOIUrl":null,"url":null,"abstract":"For integers $r \\geq 3$ and $t \\geq 2$, an $r$-uniform {\\em $t$-daisy} $\\D^t_r$ is a family of $\\binom{2t}{t}$ $r$-element sets of the form$$\\{S \\cup T \\ : T\\subset U, \\ |T|=t \\}$$for some sets $S,U$ with $|S|=r-t$, $|U|=2t$ and $S \\cap U = \\emptyset$. It was conjectured by Bollobás, Leader and Malvenuto (and independently by Bukh) that the Turán densities of $t$-daisies satisfy $\\lim\\limits_{r \\to \\infty} \\pi(\\D_r^t) = 0$ for all $t \\geq 2$; this has become a well-known problem, and it is still open for all values of $t$. In this paper, we give lower bounds for the Turán densities of $r$-uniform $t$-daisies. To do so, we introduce (and make some progress on) the following natural problem in additive combinatorics: for integers $m \\geq 2t \\geq 4$, what is the maximum cardinality $g(m,t)$ of a subset $R$ of $\\mathbb{Z}/m\\mathbb{Z}$ such that for any $x \\in \\mathbb{Z}/m\\mathbb{Z}$ and any $2t$-element subset $X$ of $\\mathbb{Z}/m\\mathbb{Z}$, there are $t$ distinct elements of $X$ whose sum is not in the translate $x+R$? This is a slice-analogue of an extremal Hilbert cube problem considered by Gunderson and Rődl as well as Cilleruelo and Tesoro.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"57 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lower Bounds for the Turán Densities of Daisies\",\"authors\":\"David Ellis, Dylan King\",\"doi\":\"10.37236/11206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For integers $r \\\\geq 3$ and $t \\\\geq 2$, an $r$-uniform {\\\\em $t$-daisy} $\\\\D^t_r$ is a family of $\\\\binom{2t}{t}$ $r$-element sets of the form$$\\\\{S \\\\cup T \\\\ : T\\\\subset U, \\\\ |T|=t \\\\}$$for some sets $S,U$ with $|S|=r-t$, $|U|=2t$ and $S \\\\cap U = \\\\emptyset$. It was conjectured by Bollobás, Leader and Malvenuto (and independently by Bukh) that the Turán densities of $t$-daisies satisfy $\\\\lim\\\\limits_{r \\\\to \\\\infty} \\\\pi(\\\\D_r^t) = 0$ for all $t \\\\geq 2$; this has become a well-known problem, and it is still open for all values of $t$. In this paper, we give lower bounds for the Turán densities of $r$-uniform $t$-daisies. To do so, we introduce (and make some progress on) the following natural problem in additive combinatorics: for integers $m \\\\geq 2t \\\\geq 4$, what is the maximum cardinality $g(m,t)$ of a subset $R$ of $\\\\mathbb{Z}/m\\\\mathbb{Z}$ such that for any $x \\\\in \\\\mathbb{Z}/m\\\\mathbb{Z}$ and any $2t$-element subset $X$ of $\\\\mathbb{Z}/m\\\\mathbb{Z}$, there are $t$ distinct elements of $X$ whose sum is not in the translate $x+R$? This is a slice-analogue of an extremal Hilbert cube problem considered by Gunderson and Rődl as well as Cilleruelo and Tesoro.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11206\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11206","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于整数 $r \geq 3$ 和 $t \geq 2$,还有 $r$-制服 {\em $t$-黛西} $\D^t_r$ 是一个有 $\binom{2t}{t}$ $r$-元素集的形式$$\{S \cup T \ : T\subset U, \ |T|=t \}$$对于某些集合 $S,U$ 有 $|S|=r-t$, $|U|=2t$ 和 $S \cap U = \emptyset$. Bollobás, Leader和Malvenuto (Bukh独立)推测,Turán的密度 $t$-雏菊满足 $\lim\limits_{r \to \infty} \pi(\D_r^t) = 0$ 对所有人 $t \geq 2$;这已经成为一个众所周知的问题,它仍然是开放的所有价值观 $t$. 本文给出了的Turán密度的下界 $r$-制服 $t$-雏菊。为此,我们引入(并取得一些进展)以下加性组合学中的自然问题:对于整数 $m \geq 2t \geq 4$,最大基数是多少 $g(m,t)$ 子集的 $R$ 的 $\mathbb{Z}/m\mathbb{Z}$ 这样对于任何 $x \in \mathbb{Z}/m\mathbb{Z}$ 任何 $2t$元子集 $X$ 的 $\mathbb{Z}/m\mathbb{Z}$,有 $t$ 的不同元素 $X$ 谁的和不在翻译中 $x+R$? 这是Gunderson和Rődl以及Cilleruelo和Tesoro所考虑的极值Hilbert立方体问题的切片模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Bounds for the Turán Densities of Daisies
For integers $r \geq 3$ and $t \geq 2$, an $r$-uniform {\em $t$-daisy} $\D^t_r$ is a family of $\binom{2t}{t}$ $r$-element sets of the form$$\{S \cup T \ : T\subset U, \ |T|=t \}$$for some sets $S,U$ with $|S|=r-t$, $|U|=2t$ and $S \cap U = \emptyset$. It was conjectured by Bollobás, Leader and Malvenuto (and independently by Bukh) that the Turán densities of $t$-daisies satisfy $\lim\limits_{r \to \infty} \pi(\D_r^t) = 0$ for all $t \geq 2$; this has become a well-known problem, and it is still open for all values of $t$. In this paper, we give lower bounds for the Turán densities of $r$-uniform $t$-daisies. To do so, we introduce (and make some progress on) the following natural problem in additive combinatorics: for integers $m \geq 2t \geq 4$, what is the maximum cardinality $g(m,t)$ of a subset $R$ of $\mathbb{Z}/m\mathbb{Z}$ such that for any $x \in \mathbb{Z}/m\mathbb{Z}$ and any $2t$-element subset $X$ of $\mathbb{Z}/m\mathbb{Z}$, there are $t$ distinct elements of $X$ whose sum is not in the translate $x+R$? This is a slice-analogue of an extremal Hilbert cube problem considered by Gunderson and Rődl as well as Cilleruelo and Tesoro.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信