斯特林公式和鞍点法在两种不同轮廓上的奇异同一性

IF 0.7 4区 数学 Q2 MATHEMATICS
Hsien-Kuei Hwang
{"title":"斯特林公式和鞍点法在两种不同轮廓上的奇异同一性","authors":"Hsien-Kuei Hwang","doi":"10.37236/11785","DOIUrl":null,"url":null,"abstract":"We prove the curious identity in the sense of formal power series:\\[\\int_{-\\infty}^{\\infty}[y^m]\\exp\\left(-\\frac{t^2}2+\\sum_{j\\ge3}\\frac{(it)^j}{j!}\\, y^{j-2}\\right)\\mathrm{d} t= \\int_{-\\infty}^{\\infty}[y^m]\\exp\\left(-\\frac{t^2}2+\\sum_{j\\ge3}\\frac{(it)^j}{j}\\, y^{j-2}\\right)\\mathrm{d} t,\\]for $m=0,1,\\dots$, where $[y^m]f(y)$ denotes the coefficient of $y^m$ in the Taylor expansion of $f$, which arises from applying the saddle-point method to derive Stirling's formula. The generality of the same approach (saddle-point method over two different contours) is also examined, together with some applications to asymptotic enumeration.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"16 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Curious Identity Arising From Stirling's Formula and Saddle-Point Method on Two Different Contours\",\"authors\":\"Hsien-Kuei Hwang\",\"doi\":\"10.37236/11785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the curious identity in the sense of formal power series:\\\\[\\\\int_{-\\\\infty}^{\\\\infty}[y^m]\\\\exp\\\\left(-\\\\frac{t^2}2+\\\\sum_{j\\\\ge3}\\\\frac{(it)^j}{j!}\\\\, y^{j-2}\\\\right)\\\\mathrm{d} t= \\\\int_{-\\\\infty}^{\\\\infty}[y^m]\\\\exp\\\\left(-\\\\frac{t^2}2+\\\\sum_{j\\\\ge3}\\\\frac{(it)^j}{j}\\\\, y^{j-2}\\\\right)\\\\mathrm{d} t,\\\\]for $m=0,1,\\\\dots$, where $[y^m]f(y)$ denotes the coefficient of $y^m$ in the Taylor expansion of $f$, which arises from applying the saddle-point method to derive Stirling's formula. The generality of the same approach (saddle-point method over two different contours) is also examined, together with some applications to asymptotic enumeration.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11785\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11785","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在形式幂级数的意义上证明了这个奇特的恒等式:\[\int_{-\infty}^{\infty}[y^m]\exp\left(-\frac{t^2}2+\sum_{j\ge3}\frac{(it)^j}{j!}\, y^{j-2}\right)\mathrm{d} t= \int_{-\infty}^{\infty}[y^m]\exp\left(-\frac{t^2}2+\sum_{j\ge3}\frac{(it)^j}{j}\, y^{j-2}\right)\mathrm{d} t,\]对于$m=0,1,\dots$,其中$[y^m]f(y)$表示$f$的泰勒展开式中$y^m$的系数,这是由应用鞍点法推导斯特林公式而产生的。同样的方法(鞍点法在两个不同的轮廓上)的一般性也被检查,连同一些应用在渐近枚举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Curious Identity Arising From Stirling's Formula and Saddle-Point Method on Two Different Contours
We prove the curious identity in the sense of formal power series:\[\int_{-\infty}^{\infty}[y^m]\exp\left(-\frac{t^2}2+\sum_{j\ge3}\frac{(it)^j}{j!}\, y^{j-2}\right)\mathrm{d} t= \int_{-\infty}^{\infty}[y^m]\exp\left(-\frac{t^2}2+\sum_{j\ge3}\frac{(it)^j}{j}\, y^{j-2}\right)\mathrm{d} t,\]for $m=0,1,\dots$, where $[y^m]f(y)$ denotes the coefficient of $y^m$ in the Taylor expansion of $f$, which arises from applying the saddle-point method to derive Stirling's formula. The generality of the same approach (saddle-point method over two different contours) is also examined, together with some applications to asymptotic enumeration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信