Yan-long Li , Qiao-gang Yin , Ye Zhang , Heng Zhou
{"title":"基于改进随机森林模型的面板堆石坝变形预测模型","authors":"Yan-long Li , Qiao-gang Yin , Ye Zhang , Heng Zhou","doi":"10.1016/j.wse.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>The unique structure and complex deformation characteristics of concrete face rockfill dams (CFRDs) create safety monitoring challenges. This study developed an improved random forest (IRF) model for dam health monitoring modeling by replacing the decision tree in the random forest (RF) model with a novel M5' model tree algorithm. The factors affecting dam deformation were preliminarily selected using the statistical model, and the grey relational degree theory was utilized to reduce the dimensions of model input variables. Finally, a deformation prediction model of CFRDs was established using the IRF model. The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm. The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models. At point ES-10, the performance evaluation indices of the IRF model were superior to those of the M5' model tree and RF models and the classical support vector regression (SVR) and back propagation (BP) neural network models, indicating the satisfactory performance of the IRF model. The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10, demonstrating its strong anti-interference and generalization capabilities. This study has developed a novel method for forecasting and analyzing dam settlements with practical significance. Moreover, the established IRF model can also provide guidance for modeling health monitoring of other structures.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 4","pages":"Pages 390-398"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000893/pdfft?md5=a45fcb03b9b568051acd6e9b18b3b8b2&pid=1-s2.0-S1674237023000893-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deformation prediction model of concrete face rockfill dams based on an improved random forest model\",\"authors\":\"Yan-long Li , Qiao-gang Yin , Ye Zhang , Heng Zhou\",\"doi\":\"10.1016/j.wse.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unique structure and complex deformation characteristics of concrete face rockfill dams (CFRDs) create safety monitoring challenges. This study developed an improved random forest (IRF) model for dam health monitoring modeling by replacing the decision tree in the random forest (RF) model with a novel M5' model tree algorithm. The factors affecting dam deformation were preliminarily selected using the statistical model, and the grey relational degree theory was utilized to reduce the dimensions of model input variables. Finally, a deformation prediction model of CFRDs was established using the IRF model. The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm. The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models. At point ES-10, the performance evaluation indices of the IRF model were superior to those of the M5' model tree and RF models and the classical support vector regression (SVR) and back propagation (BP) neural network models, indicating the satisfactory performance of the IRF model. The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10, demonstrating its strong anti-interference and generalization capabilities. This study has developed a novel method for forecasting and analyzing dam settlements with practical significance. Moreover, the established IRF model can also provide guidance for modeling health monitoring of other structures.</p></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"16 4\",\"pages\":\"Pages 390-398\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674237023000893/pdfft?md5=a45fcb03b9b568051acd6e9b18b3b8b2&pid=1-s2.0-S1674237023000893-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237023000893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023000893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Deformation prediction model of concrete face rockfill dams based on an improved random forest model
The unique structure and complex deformation characteristics of concrete face rockfill dams (CFRDs) create safety monitoring challenges. This study developed an improved random forest (IRF) model for dam health monitoring modeling by replacing the decision tree in the random forest (RF) model with a novel M5' model tree algorithm. The factors affecting dam deformation were preliminarily selected using the statistical model, and the grey relational degree theory was utilized to reduce the dimensions of model input variables. Finally, a deformation prediction model of CFRDs was established using the IRF model. The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm. The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models. At point ES-10, the performance evaluation indices of the IRF model were superior to those of the M5' model tree and RF models and the classical support vector regression (SVR) and back propagation (BP) neural network models, indicating the satisfactory performance of the IRF model. The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10, demonstrating its strong anti-interference and generalization capabilities. This study has developed a novel method for forecasting and analyzing dam settlements with practical significance. Moreover, the established IRF model can also provide guidance for modeling health monitoring of other structures.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.