{"title":"使用Al2O3纳米颗粒的主动式太阳能Still的经济、环境经济分析","authors":"Dharamveer SİNGH","doi":"10.5541/ijot.1295637","DOIUrl":null,"url":null,"abstract":"The water scarcity is primary need of analysis. The current study analyses the Economic and Enviro-economic of an N-identical (N-PVTCPC) collector double slope solar desalination units (DS-DU) with a heat exchanger (HE) using water based Al2O3 nanoparticles. An analytical program fed into MATLAB, and the analysis was monitored on an annual basis New Delhi, India. The Indian Metrological Department in Pune, India provided the input data necessary for the mathematical procedure. Considering the energy production of the winter and summer, the average yearly energy production will be calculated. The system performance has been analyzed based on Economic and Enviro-economic. In an economic analysis was performed for 15 years has found for cost of water 1.25, 1.51, and 1.79₹/kg respectively, Enviro-economic analysis for life span of 15, 20, and 30 years have found CO2 mitigation/ton 40.85, 57.46, and 90.67 kg/ton respectively and carbon credit earned 204.26, 287.30, and 453.36 ($) respectively. The proposed system has foundenergy, yield, and productivity 7.31%, 8.5%, and 5.17% greater respectively. Therefore overall the proposed system found better to previous system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economic, Enviroeconomic Analysis Of Active Solar Still Using Al2O3 Nanoparticles\",\"authors\":\"Dharamveer SİNGH\",\"doi\":\"10.5541/ijot.1295637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The water scarcity is primary need of analysis. The current study analyses the Economic and Enviro-economic of an N-identical (N-PVTCPC) collector double slope solar desalination units (DS-DU) with a heat exchanger (HE) using water based Al2O3 nanoparticles. An analytical program fed into MATLAB, and the analysis was monitored on an annual basis New Delhi, India. The Indian Metrological Department in Pune, India provided the input data necessary for the mathematical procedure. Considering the energy production of the winter and summer, the average yearly energy production will be calculated. The system performance has been analyzed based on Economic and Enviro-economic. In an economic analysis was performed for 15 years has found for cost of water 1.25, 1.51, and 1.79₹/kg respectively, Enviro-economic analysis for life span of 15, 20, and 30 years have found CO2 mitigation/ton 40.85, 57.46, and 90.67 kg/ton respectively and carbon credit earned 204.26, 287.30, and 453.36 ($) respectively. The proposed system has foundenergy, yield, and productivity 7.31%, 8.5%, and 5.17% greater respectively. Therefore overall the proposed system found better to previous system.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/ijot.1295637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1295637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Economic, Enviroeconomic Analysis Of Active Solar Still Using Al2O3 Nanoparticles
The water scarcity is primary need of analysis. The current study analyses the Economic and Enviro-economic of an N-identical (N-PVTCPC) collector double slope solar desalination units (DS-DU) with a heat exchanger (HE) using water based Al2O3 nanoparticles. An analytical program fed into MATLAB, and the analysis was monitored on an annual basis New Delhi, India. The Indian Metrological Department in Pune, India provided the input data necessary for the mathematical procedure. Considering the energy production of the winter and summer, the average yearly energy production will be calculated. The system performance has been analyzed based on Economic and Enviro-economic. In an economic analysis was performed for 15 years has found for cost of water 1.25, 1.51, and 1.79₹/kg respectively, Enviro-economic analysis for life span of 15, 20, and 30 years have found CO2 mitigation/ton 40.85, 57.46, and 90.67 kg/ton respectively and carbon credit earned 204.26, 287.30, and 453.36 ($) respectively. The proposed system has foundenergy, yield, and productivity 7.31%, 8.5%, and 5.17% greater respectively. Therefore overall the proposed system found better to previous system.