优化采样条件,使pm2.5质量及其半挥发性无机离子浓度的采样误差最小化

IF 2.8 4区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Thi-Cuc Le, Pallavi Gajanan Barhate, Kai-Jing Zhen, Manisha Mishra, David. Y. H. Pui, Chuen-Jinn Tsai
{"title":"优化采样条件,使pm2.5质量及其半挥发性无机离子浓度的采样误差最小化","authors":"Thi-Cuc Le, Pallavi Gajanan Barhate, Kai-Jing Zhen, Manisha Mishra, David. Y. H. Pui, Chuen-Jinn Tsai","doi":"10.1080/02786826.2023.2265454","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe accurate measurement of PM2.5 and its inorganic matters (IMs) is crucial for compliance monitoring and understanding particle formation. However, semi-volatile IMs (SVIMs) like NH4+, NO3− and Cl− tend to evaporate from particles, causing sampling artifacts. The evaporation loss occurs due to many factors making the quantitative prediction difficult. This study aimed to investigate the evaporation loss of SVIMs in PM2.5 under different sampling conditions. In the field tests, when a normal single Teflon filter sampler (STF), which is like a Federal Reference Method (FRM) sampler, was used to sample PM2.5 at ambient conditions, a significant SVIM evaporation loss was observed, resulting in negative biases for total IMs (-25.68 ± 3.25%) and PM2.5 concentrations (-9.87 ± 4.27%). But if PM2.5 was sampled by a chilled Teflon filter sampler (CTF) at 4 0C following aerosol dehumidification so that relative humidity (RH) was controlled to within the 10-20% range (RHd), evaporation loss was minimized with a bias of < ±10% for both total IMs and PM2.5 based on the reference data. When RHd is below 10%, both IMs and PM2.5 are under-measured, but only PM2.5 is over-measured when RHd is >20%. A model considering predictable saturation ratios for NH4+, NO3− and Cl− under various pressure drop, temperature and RH conditions was developed to predict accurately the actual concentrations of PM2.5 and its SVIMs for the STF. Additionally, the ISORROPIA-II model predicted SVIMs effectively for the CTF. In summary, using the CTF at optimized sampling conditions can achieve accurate measurement of both SVIMs and PM2.5 concentrations simultaneously.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was supported by the Ministry of Science and Technology, Taiwan (contract MOST 111-2221-E-A49-057-MY3), the Ministry of Education, the Higher Education Sprout Project of National Yang Ming Chiao Tung University, and the Academic-Industry Research Hub of People and Earth (AIR HoPE).Disclosure statementThe authors report there are no competing interests to declare.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of sampling conditions to minimize sampling errors of both PM <sub>2.5</sub> mass and its semi-volatile inorganic ion concentrations\",\"authors\":\"Thi-Cuc Le, Pallavi Gajanan Barhate, Kai-Jing Zhen, Manisha Mishra, David. Y. H. Pui, Chuen-Jinn Tsai\",\"doi\":\"10.1080/02786826.2023.2265454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe accurate measurement of PM2.5 and its inorganic matters (IMs) is crucial for compliance monitoring and understanding particle formation. However, semi-volatile IMs (SVIMs) like NH4+, NO3− and Cl− tend to evaporate from particles, causing sampling artifacts. The evaporation loss occurs due to many factors making the quantitative prediction difficult. This study aimed to investigate the evaporation loss of SVIMs in PM2.5 under different sampling conditions. In the field tests, when a normal single Teflon filter sampler (STF), which is like a Federal Reference Method (FRM) sampler, was used to sample PM2.5 at ambient conditions, a significant SVIM evaporation loss was observed, resulting in negative biases for total IMs (-25.68 ± 3.25%) and PM2.5 concentrations (-9.87 ± 4.27%). But if PM2.5 was sampled by a chilled Teflon filter sampler (CTF) at 4 0C following aerosol dehumidification so that relative humidity (RH) was controlled to within the 10-20% range (RHd), evaporation loss was minimized with a bias of < ±10% for both total IMs and PM2.5 based on the reference data. When RHd is below 10%, both IMs and PM2.5 are under-measured, but only PM2.5 is over-measured when RHd is >20%. A model considering predictable saturation ratios for NH4+, NO3− and Cl− under various pressure drop, temperature and RH conditions was developed to predict accurately the actual concentrations of PM2.5 and its SVIMs for the STF. Additionally, the ISORROPIA-II model predicted SVIMs effectively for the CTF. In summary, using the CTF at optimized sampling conditions can achieve accurate measurement of both SVIMs and PM2.5 concentrations simultaneously.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was supported by the Ministry of Science and Technology, Taiwan (contract MOST 111-2221-E-A49-057-MY3), the Ministry of Education, the Higher Education Sprout Project of National Yang Ming Chiao Tung University, and the Academic-Industry Research Hub of People and Earth (AIR HoPE).Disclosure statementThe authors report there are no competing interests to declare.\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2023.2265454\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2265454","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要PM2.5及其无机物(IMs)的准确测量对于合规监测和了解颗粒形成至关重要。然而,NH4+, NO3 -和Cl -等半挥发性IMs (SVIMs)倾向于从颗粒中蒸发,导致采样伪影。蒸发损失的发生受多种因素的影响,使定量预测变得困难。本研究旨在探讨不同采样条件下PM2.5中svm的蒸发损失。在现场试验中,当使用类似于联邦参考法(FRM)采样器的普通单Teflon过滤器采样器(STF)在环境条件下采样PM2.5时,观察到明显的SVIM蒸发损失,导致总IMs(-25.68±3.25%)和PM2.5浓度(-9.87±4.27%)呈负偏差。但是,如果在气溶胶除湿后,在4℃的温度下使用冷冻聚四氟乙烯过滤器采样器(CTF)采样PM2.5,使相对湿度(RH)控制在10-20%的范围内(RHd),则根据参考数据,总IMs和PM2.5的蒸发损失都最小,偏差<±10%。当RHd < 10%时,IMs和PM2.5均偏低,当RHd >20%时,只有PM2.5超标。建立了一个考虑不同压降、温度和相对湿度条件下NH4+、NO3−和Cl−可预测饱和比的模型,以准确预测STF的PM2.5实际浓度及其svm。此外,ISORROPIA-II模型有效地预测了CTF的svm。综上所述,在优化的采样条件下使用CTF可以同时准确测量svm和PM2.5浓度。免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。本工作得到台湾科学技术部(合同编号:MOST 111-2221-E-A49-057-MY3)、教育部、国立阳明交通大学高等教育育苗计划、人与地球产学研中心(AIR HoPE)的支持。作者报告无利益竞争需要申报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of sampling conditions to minimize sampling errors of both PM 2.5 mass and its semi-volatile inorganic ion concentrations
ABSTRACTThe accurate measurement of PM2.5 and its inorganic matters (IMs) is crucial for compliance monitoring and understanding particle formation. However, semi-volatile IMs (SVIMs) like NH4+, NO3− and Cl− tend to evaporate from particles, causing sampling artifacts. The evaporation loss occurs due to many factors making the quantitative prediction difficult. This study aimed to investigate the evaporation loss of SVIMs in PM2.5 under different sampling conditions. In the field tests, when a normal single Teflon filter sampler (STF), which is like a Federal Reference Method (FRM) sampler, was used to sample PM2.5 at ambient conditions, a significant SVIM evaporation loss was observed, resulting in negative biases for total IMs (-25.68 ± 3.25%) and PM2.5 concentrations (-9.87 ± 4.27%). But if PM2.5 was sampled by a chilled Teflon filter sampler (CTF) at 4 0C following aerosol dehumidification so that relative humidity (RH) was controlled to within the 10-20% range (RHd), evaporation loss was minimized with a bias of < ±10% for both total IMs and PM2.5 based on the reference data. When RHd is below 10%, both IMs and PM2.5 are under-measured, but only PM2.5 is over-measured when RHd is >20%. A model considering predictable saturation ratios for NH4+, NO3− and Cl− under various pressure drop, temperature and RH conditions was developed to predict accurately the actual concentrations of PM2.5 and its SVIMs for the STF. Additionally, the ISORROPIA-II model predicted SVIMs effectively for the CTF. In summary, using the CTF at optimized sampling conditions can achieve accurate measurement of both SVIMs and PM2.5 concentrations simultaneously.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was supported by the Ministry of Science and Technology, Taiwan (contract MOST 111-2221-E-A49-057-MY3), the Ministry of Education, the Higher Education Sprout Project of National Yang Ming Chiao Tung University, and the Academic-Industry Research Hub of People and Earth (AIR HoPE).Disclosure statementThe authors report there are no competing interests to declare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol Science and Technology
Aerosol Science and Technology 环境科学-工程:化工
CiteScore
8.40
自引率
7.70%
发文量
73
审稿时长
3 months
期刊介绍: Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation. Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信