过滤瑞利散射光学测量技术在涡轮机械和边界层中的应用验证

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Sean Powers, Gwibo Byun, K. Todd Lowe
{"title":"过滤瑞利散射光学测量技术在涡轮机械和边界层中的应用验证","authors":"Sean Powers, Gwibo Byun, K. Todd Lowe","doi":"10.1115/1.4063562","DOIUrl":null,"url":null,"abstract":"Abstract Filtered Rayleigh scattering (FRS) is a non-intrusive, laser-based optical technique for measuring 3-component velocity, static temperature, and static density with high spatial resolution and low uncertainty. FRS can be used to derive total values as well as turbomachinery efficiencies. The Virginia Tech team has been developing this seedless technique for simultaneous planar (or line) measurements to overcome the limitations associated with seed-based laser measurement techniques such as laser Doppler velocimetry (LDV), particle image velocimetry (PIV), and Doppler global velocimetry (DGV) as well as limitations with physical probe rakes such as blockage and wake production. This technique is especially attractive in flow cases or environments where the aforementioned seed-based laser measurement techniques are limited or not possible. A combination of specially designed boundary layer total pressure probe rake measurements, FRS optical rake measurements, and computational fluid dynamics (CFD) results in the inlet of a Honeywell TFE731-2 turbofan are presented. Results show that all three techniques (FRS, probe, and CFD) match within approximately 2% root-mean-square error (RMSE). Inlet efficiency was derived and found to be within 2.3% difference for all three techniques.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"48 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VALIDATION OF FILTERED RAYLEIGH SCATTERING OPTICAL RAKE MEASUREMENT TECHNIQUES IN TURBOMACHINERY APPLICATIONS AND BOUNDARY LAYERS\",\"authors\":\"Sean Powers, Gwibo Byun, K. Todd Lowe\",\"doi\":\"10.1115/1.4063562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Filtered Rayleigh scattering (FRS) is a non-intrusive, laser-based optical technique for measuring 3-component velocity, static temperature, and static density with high spatial resolution and low uncertainty. FRS can be used to derive total values as well as turbomachinery efficiencies. The Virginia Tech team has been developing this seedless technique for simultaneous planar (or line) measurements to overcome the limitations associated with seed-based laser measurement techniques such as laser Doppler velocimetry (LDV), particle image velocimetry (PIV), and Doppler global velocimetry (DGV) as well as limitations with physical probe rakes such as blockage and wake production. This technique is especially attractive in flow cases or environments where the aforementioned seed-based laser measurement techniques are limited or not possible. A combination of specially designed boundary layer total pressure probe rake measurements, FRS optical rake measurements, and computational fluid dynamics (CFD) results in the inlet of a Honeywell TFE731-2 turbofan are presented. Results show that all three techniques (FRS, probe, and CFD) match within approximately 2% root-mean-square error (RMSE). Inlet efficiency was derived and found to be within 2.3% difference for all three techniques.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063562\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063562","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

滤波瑞利散射(FRS)是一种非侵入式、基于激光的三分量速度、静态温度和静态密度测量技术,具有高空间分辨率和低不确定性。FRS可用于推导总价值以及涡轮机械效率。弗吉尼亚理工大学的团队一直在开发这种无籽技术,用于同时进行平面(或直线)测量,以克服基于种子的激光测量技术的局限性,如激光多普勒测速(LDV)、粒子图像测速(PIV)和多普勒全球测速(DGV),以及物理探头的局限性,如堵塞和尾迹的产生。在流动情况下或上述基于种子的激光测量技术有限或不可能的环境中,该技术尤其具有吸引力。介绍了霍尼韦尔TFE731-2涡扇进气道特殊设计的边界层总压探头前角测量、FRS光学前角测量和计算流体动力学(CFD)测量结果。结果表明,所有三种技术(FRS,探针和CFD)的匹配在大约2%的均方根误差(RMSE)内。导出了进口效率,发现所有三种技术的差异在2.3%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VALIDATION OF FILTERED RAYLEIGH SCATTERING OPTICAL RAKE MEASUREMENT TECHNIQUES IN TURBOMACHINERY APPLICATIONS AND BOUNDARY LAYERS
Abstract Filtered Rayleigh scattering (FRS) is a non-intrusive, laser-based optical technique for measuring 3-component velocity, static temperature, and static density with high spatial resolution and low uncertainty. FRS can be used to derive total values as well as turbomachinery efficiencies. The Virginia Tech team has been developing this seedless technique for simultaneous planar (or line) measurements to overcome the limitations associated with seed-based laser measurement techniques such as laser Doppler velocimetry (LDV), particle image velocimetry (PIV), and Doppler global velocimetry (DGV) as well as limitations with physical probe rakes such as blockage and wake production. This technique is especially attractive in flow cases or environments where the aforementioned seed-based laser measurement techniques are limited or not possible. A combination of specially designed boundary layer total pressure probe rake measurements, FRS optical rake measurements, and computational fluid dynamics (CFD) results in the inlet of a Honeywell TFE731-2 turbofan are presented. Results show that all three techniques (FRS, probe, and CFD) match within approximately 2% root-mean-square error (RMSE). Inlet efficiency was derived and found to be within 2.3% difference for all three techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信