利用织物上3D打印技术制造折纸软夹持器

IF 2.9 Q2 ROBOTICS
Robotics Pub Date : 2023-11-08 DOI:10.3390/robotics12060150
Hana Choi, Tongil Park, Gyomin Hwang, Youngji Ko, Dohun Lee, Taeksu Lee, Jong-Oh Park, Doyeon Bang
{"title":"利用织物上3D打印技术制造折纸软夹持器","authors":"Hana Choi, Tongil Park, Gyomin Hwang, Youngji Ko, Dohun Lee, Taeksu Lee, Jong-Oh Park, Doyeon Bang","doi":"10.3390/robotics12060150","DOIUrl":null,"url":null,"abstract":"In this work, we have presented a soft encapsulating gripper for gentle grasps. This was enabled by a series of soft origami patterns, such as the Yoshimura pattern, which was directly printed on fabric. The proposed gripper features a deformable body that enables safe interaction with its surroundings, gentle grasps of delicate and fragile objects, and encapsulated structures allowing for noninvasive enclosing. The gripper was fabricated by a direct 3D printing of soft materials on fabric. This allowed for the stiffness adjustment of gripper components and a simple fabrication process. We evaluated the grasping performance of the proposed gripper with several delicate and ultra-gentle objects. It was concluded that the proposed gripper could manipulate delicate objects from fruits to silicone jellyfishes and, therefore, have considerable potential for use as improved soft encapsulating grippers in agriculture and engineering fields.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"39 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Origami Soft Gripper Using On-Fabric 3D Printing\",\"authors\":\"Hana Choi, Tongil Park, Gyomin Hwang, Youngji Ko, Dohun Lee, Taeksu Lee, Jong-Oh Park, Doyeon Bang\",\"doi\":\"10.3390/robotics12060150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have presented a soft encapsulating gripper for gentle grasps. This was enabled by a series of soft origami patterns, such as the Yoshimura pattern, which was directly printed on fabric. The proposed gripper features a deformable body that enables safe interaction with its surroundings, gentle grasps of delicate and fragile objects, and encapsulated structures allowing for noninvasive enclosing. The gripper was fabricated by a direct 3D printing of soft materials on fabric. This allowed for the stiffness adjustment of gripper components and a simple fabrication process. We evaluated the grasping performance of the proposed gripper with several delicate and ultra-gentle objects. It was concluded that the proposed gripper could manipulate delicate objects from fruits to silicone jellyfishes and, therefore, have considerable potential for use as improved soft encapsulating grippers in agriculture and engineering fields.\",\"PeriodicalId\":37568,\"journal\":{\"name\":\"Robotics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics12060150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种柔软的封装夹具,用于轻柔的抓取。这是通过一系列柔软的折纸图案实现的,比如吉村图案,它直接印在织物上。该夹具具有可变形的主体,能够与周围环境安全互动,轻柔地抓住精致易碎的物体,以及允许非侵入性封闭的封装结构。该夹具是通过在织物上直接3D打印柔软材料制成的。这允许夹具部件的刚度调整和一个简单的制造过程。我们用几个精致和超温柔的物体评估了所提出的抓手的抓取性能。由此得出结论,该夹持器可以处理从水果到硅胶水母等细小物体,因此作为改良软封装夹持器在农业和工程领域具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of Origami Soft Gripper Using On-Fabric 3D Printing
In this work, we have presented a soft encapsulating gripper for gentle grasps. This was enabled by a series of soft origami patterns, such as the Yoshimura pattern, which was directly printed on fabric. The proposed gripper features a deformable body that enables safe interaction with its surroundings, gentle grasps of delicate and fragile objects, and encapsulated structures allowing for noninvasive enclosing. The gripper was fabricated by a direct 3D printing of soft materials on fabric. This allowed for the stiffness adjustment of gripper components and a simple fabrication process. We evaluated the grasping performance of the proposed gripper with several delicate and ultra-gentle objects. It was concluded that the proposed gripper could manipulate delicate objects from fruits to silicone jellyfishes and, therefore, have considerable potential for use as improved soft encapsulating grippers in agriculture and engineering fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics
Robotics Mathematics-Control and Optimization
CiteScore
6.70
自引率
8.10%
发文量
114
审稿时长
11 weeks
期刊介绍: Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信