{"title":"用于认知无线电和6ghz以下5G新无线电应用的频率可重构双元MIMO天线","authors":"Yahia Benghanem, Ali Mansoul, Lila Mouffok","doi":"10.1017/s1759078723001289","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a compact two-element reconfigurable multiple-input multiple-output (MIMO) antenna for 5G new radio sub-6 GHz is presented and discussed. The proposed MIMO antenna has four frequency operating modes: a wideband operating mode (2.41–6 GHz), a wideband operating mode with a notching band at 3.5 GHz (3.2–3.66 GHz), a low-pass filter mode that filters the higher frequencies with a wide operating band from 2.41 GHz to 4.7 GHz, and a dual-band mode with two operating narrow bands (2.41–3.16 GHz and 3.64–4.7 GHz). To improve the isolation over the entire operating band, a strip line connecting the two ground planes of the two antenna elements has been used. To validate the proposed approach, different prototypes have been fabricated and measured. The simulation results are in good agreement with the measurement results. The proposed antenna has good MIMO diversity performance with a maximum gain of 4.64 dBi. The minimum isolation is 18 dB for the four operating modes, while a measured envelope correlation coefficient of less than 0.008 is achieved. The diversity gain is near 10 dB for various operating modes. The antenna is suitable for cognitive radio and 5G sub-6 GHz applications.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"42 s196","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency reconfigurable two-element MIMO antenna for cognitive radio and 5G new radio sub-6 GHz applications\",\"authors\":\"Yahia Benghanem, Ali Mansoul, Lila Mouffok\",\"doi\":\"10.1017/s1759078723001289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a compact two-element reconfigurable multiple-input multiple-output (MIMO) antenna for 5G new radio sub-6 GHz is presented and discussed. The proposed MIMO antenna has four frequency operating modes: a wideband operating mode (2.41–6 GHz), a wideband operating mode with a notching band at 3.5 GHz (3.2–3.66 GHz), a low-pass filter mode that filters the higher frequencies with a wide operating band from 2.41 GHz to 4.7 GHz, and a dual-band mode with two operating narrow bands (2.41–3.16 GHz and 3.64–4.7 GHz). To improve the isolation over the entire operating band, a strip line connecting the two ground planes of the two antenna elements has been used. To validate the proposed approach, different prototypes have been fabricated and measured. The simulation results are in good agreement with the measurement results. The proposed antenna has good MIMO diversity performance with a maximum gain of 4.64 dBi. The minimum isolation is 18 dB for the four operating modes, while a measured envelope correlation coefficient of less than 0.008 is achieved. The diversity gain is near 10 dB for various operating modes. The antenna is suitable for cognitive radio and 5G sub-6 GHz applications.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"42 s196\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078723001289\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1759078723001289","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Frequency reconfigurable two-element MIMO antenna for cognitive radio and 5G new radio sub-6 GHz applications
Abstract In this paper, a compact two-element reconfigurable multiple-input multiple-output (MIMO) antenna for 5G new radio sub-6 GHz is presented and discussed. The proposed MIMO antenna has four frequency operating modes: a wideband operating mode (2.41–6 GHz), a wideband operating mode with a notching band at 3.5 GHz (3.2–3.66 GHz), a low-pass filter mode that filters the higher frequencies with a wide operating band from 2.41 GHz to 4.7 GHz, and a dual-band mode with two operating narrow bands (2.41–3.16 GHz and 3.64–4.7 GHz). To improve the isolation over the entire operating band, a strip line connecting the two ground planes of the two antenna elements has been used. To validate the proposed approach, different prototypes have been fabricated and measured. The simulation results are in good agreement with the measurement results. The proposed antenna has good MIMO diversity performance with a maximum gain of 4.64 dBi. The minimum isolation is 18 dB for the four operating modes, while a measured envelope correlation coefficient of less than 0.008 is achieved. The diversity gain is near 10 dB for various operating modes. The antenna is suitable for cognitive radio and 5G sub-6 GHz applications.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.