{"title":"零售品牌客户终身价值预测的高性能交钥匙系统","authors":"Yan Yan, Nicholas Resnick","doi":"10.1007/s11129-023-09272-x","DOIUrl":null,"url":null,"abstract":"Abstract Customer lifetime value (CLV) modeling underpins modern marketing analytics, enabling the development of tailored customer relationship management strategies based on the predicted future value of their customers. As part of Amperity’s enterprise customer data platform (CDP), we deploy and maintain a CLV prediction system that caters to a rapidly growing list of brands across various industries, purchase behaviors, and scales. Given the impracticality of developing bespoke models for each brand, our solution must be adaptive, generalizable, and high-performing ”out of the box”. Furthermore, our platform demands daily prediction updates to facilitate prompt marketing decisions. This paper introduces a turnkey CLV prediction system that achieves state-of-the-art performance across a diverse set of brands. This system has several contributions: 1) the use of encodings and embeddings to incorporate signals from high-cardinality data; 2) a multi-stage churn-CLV modeling framework that augments additional flexibility in adjusting churn probabilities, subsequently reducing CLV prediction errors while maintaining a synergistic learning process; 3) a feature-weighted ensemble of both generative and discriminative models to accommodate diverse underlying purchase patterns. Empirical results show that our enhanced model consistently surpasses benchmark performances for twelve retail brands across six evaluation intervals from June 2020 to September 2022.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance turnkey system for customer lifetime value prediction in retail brands\",\"authors\":\"Yan Yan, Nicholas Resnick\",\"doi\":\"10.1007/s11129-023-09272-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Customer lifetime value (CLV) modeling underpins modern marketing analytics, enabling the development of tailored customer relationship management strategies based on the predicted future value of their customers. As part of Amperity’s enterprise customer data platform (CDP), we deploy and maintain a CLV prediction system that caters to a rapidly growing list of brands across various industries, purchase behaviors, and scales. Given the impracticality of developing bespoke models for each brand, our solution must be adaptive, generalizable, and high-performing ”out of the box”. Furthermore, our platform demands daily prediction updates to facilitate prompt marketing decisions. This paper introduces a turnkey CLV prediction system that achieves state-of-the-art performance across a diverse set of brands. This system has several contributions: 1) the use of encodings and embeddings to incorporate signals from high-cardinality data; 2) a multi-stage churn-CLV modeling framework that augments additional flexibility in adjusting churn probabilities, subsequently reducing CLV prediction errors while maintaining a synergistic learning process; 3) a feature-weighted ensemble of both generative and discriminative models to accommodate diverse underlying purchase patterns. Empirical results show that our enhanced model consistently surpasses benchmark performances for twelve retail brands across six evaluation intervals from June 2020 to September 2022.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11129-023-09272-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11129-023-09272-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A high-performance turnkey system for customer lifetime value prediction in retail brands
Abstract Customer lifetime value (CLV) modeling underpins modern marketing analytics, enabling the development of tailored customer relationship management strategies based on the predicted future value of their customers. As part of Amperity’s enterprise customer data platform (CDP), we deploy and maintain a CLV prediction system that caters to a rapidly growing list of brands across various industries, purchase behaviors, and scales. Given the impracticality of developing bespoke models for each brand, our solution must be adaptive, generalizable, and high-performing ”out of the box”. Furthermore, our platform demands daily prediction updates to facilitate prompt marketing decisions. This paper introduces a turnkey CLV prediction system that achieves state-of-the-art performance across a diverse set of brands. This system has several contributions: 1) the use of encodings and embeddings to incorporate signals from high-cardinality data; 2) a multi-stage churn-CLV modeling framework that augments additional flexibility in adjusting churn probabilities, subsequently reducing CLV prediction errors while maintaining a synergistic learning process; 3) a feature-weighted ensemble of both generative and discriminative models to accommodate diverse underlying purchase patterns. Empirical results show that our enhanced model consistently surpasses benchmark performances for twelve retail brands across six evaluation intervals from June 2020 to September 2022.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.