{"title":"零售品牌客户终身价值预测的高性能交钥匙系统","authors":"Yan Yan, Nicholas Resnick","doi":"10.1007/s11129-023-09272-x","DOIUrl":null,"url":null,"abstract":"Abstract Customer lifetime value (CLV) modeling underpins modern marketing analytics, enabling the development of tailored customer relationship management strategies based on the predicted future value of their customers. As part of Amperity’s enterprise customer data platform (CDP), we deploy and maintain a CLV prediction system that caters to a rapidly growing list of brands across various industries, purchase behaviors, and scales. Given the impracticality of developing bespoke models for each brand, our solution must be adaptive, generalizable, and high-performing ”out of the box”. Furthermore, our platform demands daily prediction updates to facilitate prompt marketing decisions. This paper introduces a turnkey CLV prediction system that achieves state-of-the-art performance across a diverse set of brands. This system has several contributions: 1) the use of encodings and embeddings to incorporate signals from high-cardinality data; 2) a multi-stage churn-CLV modeling framework that augments additional flexibility in adjusting churn probabilities, subsequently reducing CLV prediction errors while maintaining a synergistic learning process; 3) a feature-weighted ensemble of both generative and discriminative models to accommodate diverse underlying purchase patterns. Empirical results show that our enhanced model consistently surpasses benchmark performances for twelve retail brands across six evaluation intervals from June 2020 to September 2022.","PeriodicalId":46425,"journal":{"name":"Qme-Quantitative Marketing and Economics","volume":"103 3","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance turnkey system for customer lifetime value prediction in retail brands\",\"authors\":\"Yan Yan, Nicholas Resnick\",\"doi\":\"10.1007/s11129-023-09272-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Customer lifetime value (CLV) modeling underpins modern marketing analytics, enabling the development of tailored customer relationship management strategies based on the predicted future value of their customers. As part of Amperity’s enterprise customer data platform (CDP), we deploy and maintain a CLV prediction system that caters to a rapidly growing list of brands across various industries, purchase behaviors, and scales. Given the impracticality of developing bespoke models for each brand, our solution must be adaptive, generalizable, and high-performing ”out of the box”. Furthermore, our platform demands daily prediction updates to facilitate prompt marketing decisions. This paper introduces a turnkey CLV prediction system that achieves state-of-the-art performance across a diverse set of brands. This system has several contributions: 1) the use of encodings and embeddings to incorporate signals from high-cardinality data; 2) a multi-stage churn-CLV modeling framework that augments additional flexibility in adjusting churn probabilities, subsequently reducing CLV prediction errors while maintaining a synergistic learning process; 3) a feature-weighted ensemble of both generative and discriminative models to accommodate diverse underlying purchase patterns. Empirical results show that our enhanced model consistently surpasses benchmark performances for twelve retail brands across six evaluation intervals from June 2020 to September 2022.\",\"PeriodicalId\":46425,\"journal\":{\"name\":\"Qme-Quantitative Marketing and Economics\",\"volume\":\"103 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qme-Quantitative Marketing and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11129-023-09272-x\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qme-Quantitative Marketing and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11129-023-09272-x","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
A high-performance turnkey system for customer lifetime value prediction in retail brands
Abstract Customer lifetime value (CLV) modeling underpins modern marketing analytics, enabling the development of tailored customer relationship management strategies based on the predicted future value of their customers. As part of Amperity’s enterprise customer data platform (CDP), we deploy and maintain a CLV prediction system that caters to a rapidly growing list of brands across various industries, purchase behaviors, and scales. Given the impracticality of developing bespoke models for each brand, our solution must be adaptive, generalizable, and high-performing ”out of the box”. Furthermore, our platform demands daily prediction updates to facilitate prompt marketing decisions. This paper introduces a turnkey CLV prediction system that achieves state-of-the-art performance across a diverse set of brands. This system has several contributions: 1) the use of encodings and embeddings to incorporate signals from high-cardinality data; 2) a multi-stage churn-CLV modeling framework that augments additional flexibility in adjusting churn probabilities, subsequently reducing CLV prediction errors while maintaining a synergistic learning process; 3) a feature-weighted ensemble of both generative and discriminative models to accommodate diverse underlying purchase patterns. Empirical results show that our enhanced model consistently surpasses benchmark performances for twelve retail brands across six evaluation intervals from June 2020 to September 2022.
期刊介绍:
Quantitative Marketing and Economics (QME) publishes research in the intersection of Marketing, Economics and Statistics. Our focus is on important applied problems of relevance to marketing using a quantitative approach. We define marketing broadly as the study of the interface between firms, competitors and consumers. This includes but is not limited to consumer preferences, consumer demand and decision-making, strategic interaction of firms, pricing, promotion, targeting, product design/positioning, and channel issues. We embrace a wide variety of research methods including applied economic theory, econometrics and statistical methods. Empirical research using primary, secondary or experimental data is also encouraged. Officially cited as: Quant Mark Econ