Loring J. Thomas, Peng Huang, Xiaoshuang Iris Luo, John R. Hipp, Carter T. Butts
{"title":"嵌套结构中三方阵列数据的保边插值及其在小面积单元上的应用","authors":"Loring J. Thomas, Peng Huang, Xiaoshuang Iris Luo, John R. Hipp, Carter T. Butts","doi":"10.1177/00811750231203218","DOIUrl":null,"url":null,"abstract":"Geospatial population data are typically organized into nested hierarchies of areal units, in which each unit is a union of units at the next lower level. There is increasing interest in analyses at fine geographic detail, but these lowest rungs of the areal unit hierarchy are often incompletely tabulated because of cost, privacy, or other considerations. Here, the authors introduce a novel algorithm to impute crosstabs of up to three dimensions (e.g., race, ethnicity, and gender) from marginal data combined with data at higher levels of aggregation. This method exactly preserves the observed fine-grained marginals, while approximating higher-order correlations observed in more complete higher level data. The authors show how this approach can be used with U.S. census data via a case study involving differences in exposure to crime across demographic groups, showing that the imputation process introduces very little error into downstream analysis, while depicting social process at the more fine-grained level.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"91 3","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marginal-Preserving Imputation of Three-Way Array Data in Nested Structures, with Application to Small Areal Units\",\"authors\":\"Loring J. Thomas, Peng Huang, Xiaoshuang Iris Luo, John R. Hipp, Carter T. Butts\",\"doi\":\"10.1177/00811750231203218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geospatial population data are typically organized into nested hierarchies of areal units, in which each unit is a union of units at the next lower level. There is increasing interest in analyses at fine geographic detail, but these lowest rungs of the areal unit hierarchy are often incompletely tabulated because of cost, privacy, or other considerations. Here, the authors introduce a novel algorithm to impute crosstabs of up to three dimensions (e.g., race, ethnicity, and gender) from marginal data combined with data at higher levels of aggregation. This method exactly preserves the observed fine-grained marginals, while approximating higher-order correlations observed in more complete higher level data. The authors show how this approach can be used with U.S. census data via a case study involving differences in exposure to crime across demographic groups, showing that the imputation process introduces very little error into downstream analysis, while depicting social process at the more fine-grained level.\",\"PeriodicalId\":48140,\"journal\":{\"name\":\"Sociological Methodology\",\"volume\":\"91 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00811750231203218\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00811750231203218","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
Marginal-Preserving Imputation of Three-Way Array Data in Nested Structures, with Application to Small Areal Units
Geospatial population data are typically organized into nested hierarchies of areal units, in which each unit is a union of units at the next lower level. There is increasing interest in analyses at fine geographic detail, but these lowest rungs of the areal unit hierarchy are often incompletely tabulated because of cost, privacy, or other considerations. Here, the authors introduce a novel algorithm to impute crosstabs of up to three dimensions (e.g., race, ethnicity, and gender) from marginal data combined with data at higher levels of aggregation. This method exactly preserves the observed fine-grained marginals, while approximating higher-order correlations observed in more complete higher level data. The authors show how this approach can be used with U.S. census data via a case study involving differences in exposure to crime across demographic groups, showing that the imputation process introduces very little error into downstream analysis, while depicting social process at the more fine-grained level.
期刊介绍:
Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.