利用综合捕食-猎物模型评估物种相互作用

Matthieu Paquet, Frédéric Barraquand
{"title":"利用综合捕食-猎物模型评估物种相互作用","authors":"Matthieu Paquet, Frédéric Barraquand","doi":"10.24072/pcjournal.337","DOIUrl":null,"url":null,"abstract":"Inferring the strength of species interactions from demographic data is a challenging task. The Integrated Population Modelling (IPM) approach, bringing together population counts, capture-recapture, and individual-level fecundity data into a unified model framework, has been extended from single species to the community level. This allows to specify IPMs for multiple species with interactions specified as links between vital rates and stage-specific densities. However, there is no evaluation of such models when interactions are actually absent---while any interaction inference method runs the risk of producing false positives. We investigate here whether multispecies IPMs could output interactions where there are in fact none, building on an existing predator-prey IPM. We show that interspecific density-dependence estimates are centered on zero when simulated to be zero, and therefore their estimation is unbiased. Their coverage probability, quantifying how many times credible intervals include zero, is also satisfactory. We further confirm that adding random temporal variation to multispecies density-dependent link functions does not alter these results. This study therefore reaffirms the potential of multispecies IPMs to infer correctly how biotic interactions influence demography, although future studies should investigate model misspecifications.","PeriodicalId":74413,"journal":{"name":"Peer community journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing species interactions using integrated predator-prey models\",\"authors\":\"Matthieu Paquet, Frédéric Barraquand\",\"doi\":\"10.24072/pcjournal.337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferring the strength of species interactions from demographic data is a challenging task. The Integrated Population Modelling (IPM) approach, bringing together population counts, capture-recapture, and individual-level fecundity data into a unified model framework, has been extended from single species to the community level. This allows to specify IPMs for multiple species with interactions specified as links between vital rates and stage-specific densities. However, there is no evaluation of such models when interactions are actually absent---while any interaction inference method runs the risk of producing false positives. We investigate here whether multispecies IPMs could output interactions where there are in fact none, building on an existing predator-prey IPM. We show that interspecific density-dependence estimates are centered on zero when simulated to be zero, and therefore their estimation is unbiased. Their coverage probability, quantifying how many times credible intervals include zero, is also satisfactory. We further confirm that adding random temporal variation to multispecies density-dependent link functions does not alter these results. This study therefore reaffirms the potential of multispecies IPMs to infer correctly how biotic interactions influence demography, although future studies should investigate model misspecifications.\",\"PeriodicalId\":74413,\"journal\":{\"name\":\"Peer community journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer community journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24072/pcjournal.337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer community journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24072/pcjournal.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从人口统计数据推断物种相互作用的强度是一项具有挑战性的任务。综合种群模型(IPM)方法将种群数量、捕获-再捕获和个体水平的繁殖力数据整合到一个统一的模型框架中,已从单一物种扩展到群落水平。这允许为多个物种指定ipm,并将相互作用指定为生命速率和阶段特定密度之间的联系。然而,当相互作用实际上不存在时,就没有对这些模型进行评估——而任何相互作用推理方法都有产生误报的风险。我们在此研究多物种IPM是否可以在实际上没有相互作用的情况下输出相互作用,建立在现有的捕食者-猎物IPM的基础上。我们表明,当模拟为零时,种间密度依赖估计以零为中心,因此它们的估计是无偏的。它们的覆盖概率(量化可信区间包含零的次数)也令人满意。我们进一步证实,将随机时间变化添加到多物种密度相关的连接函数中不会改变这些结果。因此,这项研究重申了多物种ipm在正确推断生物相互作用如何影响人口统计学方面的潜力,尽管未来的研究应该调查模型的错误规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing species interactions using integrated predator-prey models
Inferring the strength of species interactions from demographic data is a challenging task. The Integrated Population Modelling (IPM) approach, bringing together population counts, capture-recapture, and individual-level fecundity data into a unified model framework, has been extended from single species to the community level. This allows to specify IPMs for multiple species with interactions specified as links between vital rates and stage-specific densities. However, there is no evaluation of such models when interactions are actually absent---while any interaction inference method runs the risk of producing false positives. We investigate here whether multispecies IPMs could output interactions where there are in fact none, building on an existing predator-prey IPM. We show that interspecific density-dependence estimates are centered on zero when simulated to be zero, and therefore their estimation is unbiased. Their coverage probability, quantifying how many times credible intervals include zero, is also satisfactory. We further confirm that adding random temporal variation to multispecies density-dependent link functions does not alter these results. This study therefore reaffirms the potential of multispecies IPMs to infer correctly how biotic interactions influence demography, although future studies should investigate model misspecifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信