{"title":"考虑维修影响下动态阈值的设备剩余使用寿命预测","authors":"Kangning Li, Li'na Ren, Xueliang Li, Ziqian Wang","doi":"10.17531/ein/174903","DOIUrl":null,"url":null,"abstract":"A novel approach for predicting remaining useful life (RUL) is proposed for situations where maintenance threshold and failure threshold exhibit dynamic behavior due to uncertainties in degradation and the influence of detection strategies during maintenance processes. The approach introduces maintenance threshold error to establish a multi-stage maintenance-impact degradation model with dynamic maintenance threshold based on the Wiener process. This model considers the impact of maintenance on degradation rate, amount, and path. Moreover, by using the first hitting time (FHT) and introducing failure threshold error to reflect the dynamic behavior of the failure threshold, the formula for predicting equipment RUL is derived. The model parameters are estimated using both the maximum likelihood estimation (MLE) approach and Bayesian formula. The proposed approach was validated with simulation data and gyroscope degradation data, and the results demonstrate its ability to effectively enhance the precision of equipment RUL prediction.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"221 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining useful life prediction of equipment considering dynamic thresholds under the influence of maintenance\",\"authors\":\"Kangning Li, Li'na Ren, Xueliang Li, Ziqian Wang\",\"doi\":\"10.17531/ein/174903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach for predicting remaining useful life (RUL) is proposed for situations where maintenance threshold and failure threshold exhibit dynamic behavior due to uncertainties in degradation and the influence of detection strategies during maintenance processes. The approach introduces maintenance threshold error to establish a multi-stage maintenance-impact degradation model with dynamic maintenance threshold based on the Wiener process. This model considers the impact of maintenance on degradation rate, amount, and path. Moreover, by using the first hitting time (FHT) and introducing failure threshold error to reflect the dynamic behavior of the failure threshold, the formula for predicting equipment RUL is derived. The model parameters are estimated using both the maximum likelihood estimation (MLE) approach and Bayesian formula. The proposed approach was validated with simulation data and gyroscope degradation data, and the results demonstrate its ability to effectively enhance the precision of equipment RUL prediction.\",\"PeriodicalId\":50549,\"journal\":{\"name\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/174903\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/174903","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Remaining useful life prediction of equipment considering dynamic thresholds under the influence of maintenance
A novel approach for predicting remaining useful life (RUL) is proposed for situations where maintenance threshold and failure threshold exhibit dynamic behavior due to uncertainties in degradation and the influence of detection strategies during maintenance processes. The approach introduces maintenance threshold error to establish a multi-stage maintenance-impact degradation model with dynamic maintenance threshold based on the Wiener process. This model considers the impact of maintenance on degradation rate, amount, and path. Moreover, by using the first hitting time (FHT) and introducing failure threshold error to reflect the dynamic behavior of the failure threshold, the formula for predicting equipment RUL is derived. The model parameters are estimated using both the maximum likelihood estimation (MLE) approach and Bayesian formula. The proposed approach was validated with simulation data and gyroscope degradation data, and the results demonstrate its ability to effectively enhance the precision of equipment RUL prediction.
期刊介绍:
The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.