{"title":"深入了解灰尘污染特性和清洁解决方案,以调查对全球光伏系统性能的影响","authors":"Khaled Alazbe, Habbie Alex Roy, Aysha Alremeithi, ALKindi Saif, Maram AlHashmi, Layal Daccache, Aaesha Alnuaimi","doi":"10.1088/2516-1083/ad0adb","DOIUrl":null,"url":null,"abstract":"Abstract The energy crisis we currently struggle with is an augmentation of decades of neglect and irrational exploitation of the Earth’s resources. With manifold contributing factors such as the high demand for energy, highly over-populated areas, and fossil fuel depletion, the EU has proposed to cut greenhouse gas emissions by at least 55% of 1990 levels by 2030, on the ambitious road to becoming carbon neutral by 2050. Enlarging and diversifying efficient renewable resources is a crucial pillar to satisfying the overwhelming energy needs. The road to this goal is paved by the intensive implementation of solar resources, which are the most promising with their ability to cover an entire year’s energy consumption by just one hour of irradiation if almost 100% of the incoming solar energy could be converted. As widespread and evolved as solar photovoltaic (PV) systems might be, they do present a myriad of challenges in their lifetime. PV soiling is among the major bottlenecks in PV power plants due to its direct influence on both the performance and efficiency of the overall system. This work will shed light on soiling characteristics after guiding through the soiling concepts, rates, and geographical distribution probability. The nature of soiling, its composition, and its impact on the performance of PV modules with full-sized cells will be described. The essence of this review is based on the various cleaning mechanisms that aim to reduce soiling and enhance PV plant performance. This work is concluded by summarizing the review content whilst highlighting the current support and efforts put forth by worldwide organizations to embody the motivation and essence of requirements in the pursuit of soiling reduction and green energy pathways.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":" 4","pages":"0"},"PeriodicalIF":32.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into dust soiling characteristics and cleaning solutions to investigate impact on PV systems performance across the globe\",\"authors\":\"Khaled Alazbe, Habbie Alex Roy, Aysha Alremeithi, ALKindi Saif, Maram AlHashmi, Layal Daccache, Aaesha Alnuaimi\",\"doi\":\"10.1088/2516-1083/ad0adb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The energy crisis we currently struggle with is an augmentation of decades of neglect and irrational exploitation of the Earth’s resources. With manifold contributing factors such as the high demand for energy, highly over-populated areas, and fossil fuel depletion, the EU has proposed to cut greenhouse gas emissions by at least 55% of 1990 levels by 2030, on the ambitious road to becoming carbon neutral by 2050. Enlarging and diversifying efficient renewable resources is a crucial pillar to satisfying the overwhelming energy needs. The road to this goal is paved by the intensive implementation of solar resources, which are the most promising with their ability to cover an entire year’s energy consumption by just one hour of irradiation if almost 100% of the incoming solar energy could be converted. As widespread and evolved as solar photovoltaic (PV) systems might be, they do present a myriad of challenges in their lifetime. PV soiling is among the major bottlenecks in PV power plants due to its direct influence on both the performance and efficiency of the overall system. This work will shed light on soiling characteristics after guiding through the soiling concepts, rates, and geographical distribution probability. The nature of soiling, its composition, and its impact on the performance of PV modules with full-sized cells will be described. The essence of this review is based on the various cleaning mechanisms that aim to reduce soiling and enhance PV plant performance. This work is concluded by summarizing the review content whilst highlighting the current support and efforts put forth by worldwide organizations to embody the motivation and essence of requirements in the pursuit of soiling reduction and green energy pathways.\",\"PeriodicalId\":410,\"journal\":{\"name\":\"Progress in Energy and Combustion Science\",\"volume\":\" 4\",\"pages\":\"0\"},\"PeriodicalIF\":32.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy and Combustion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1083/ad0adb\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1083/ad0adb","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Insight into dust soiling characteristics and cleaning solutions to investigate impact on PV systems performance across the globe
Abstract The energy crisis we currently struggle with is an augmentation of decades of neglect and irrational exploitation of the Earth’s resources. With manifold contributing factors such as the high demand for energy, highly over-populated areas, and fossil fuel depletion, the EU has proposed to cut greenhouse gas emissions by at least 55% of 1990 levels by 2030, on the ambitious road to becoming carbon neutral by 2050. Enlarging and diversifying efficient renewable resources is a crucial pillar to satisfying the overwhelming energy needs. The road to this goal is paved by the intensive implementation of solar resources, which are the most promising with their ability to cover an entire year’s energy consumption by just one hour of irradiation if almost 100% of the incoming solar energy could be converted. As widespread and evolved as solar photovoltaic (PV) systems might be, they do present a myriad of challenges in their lifetime. PV soiling is among the major bottlenecks in PV power plants due to its direct influence on both the performance and efficiency of the overall system. This work will shed light on soiling characteristics after guiding through the soiling concepts, rates, and geographical distribution probability. The nature of soiling, its composition, and its impact on the performance of PV modules with full-sized cells will be described. The essence of this review is based on the various cleaning mechanisms that aim to reduce soiling and enhance PV plant performance. This work is concluded by summarizing the review content whilst highlighting the current support and efforts put forth by worldwide organizations to embody the motivation and essence of requirements in the pursuit of soiling reduction and green energy pathways.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.