正规子集的积

IF 1.2 2区 数学 Q1 MATHEMATICS
Michael Larsen, Aner Shalev, Pham Tiep
{"title":"正规子集的积","authors":"Michael Larsen, Aner Shalev, Pham Tiep","doi":"10.1090/tran/8960","DOIUrl":null,"url":null,"abstract":"In this paper we consider which families of finite simple groups <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have the property that for each <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\epsilon &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exists <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper G EndAbsoluteValue greater-than-or-equal-to upper N\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|G| \\ge N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S comma upper T\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S, T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are normal subsets of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon StartAbsoluteValue upper G EndAbsoluteValue\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\epsilon |G|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements each, then every non-trivial element of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the product of an element of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an element of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\"application/x-tex\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal upper S normal upper L Subscript n Baseline left-parenthesis q right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">P</mml:mi> <mml:mi mathvariant=\"normal\">S</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {PSL}_n(q)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is fixed and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n right-arrow normal infinity\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\to \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. However, in the case <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S equals upper T\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S=T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> alternating this holds with an explicit bound on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\epsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Related problems and applications are also discussed. In particular we show that, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"w 1 comma w 2\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">w_1, w_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are non-trivial words, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite simple group of Lie type of bounded rank, and for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g element-of upper G\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g \\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript w 1 left-parenthesis upper G right-parenthesis comma w 2 left-parenthesis upper G right-parenthesis Baseline left-parenthesis g right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">P_{w_1(G),w_2(G)}(g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the probability that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g 1 g 2 equals g\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g_1g_2 = g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g Subscript i Baseline element-of w Subscript i Baseline left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">g_i \\in w_i(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are chosen uniformly and independently, then, as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper G EndAbsoluteValue right-arrow normal infinity\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|G| \\to \\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the distribution <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript w 1 left-parenthesis upper G right-parenthesis comma w 2 left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">P_{w_1(G),w_2(G)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> tends to the uniform distribution on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of normal subsets\",\"authors\":\"Michael Larsen, Aner Shalev, Pham Tiep\",\"doi\":\"10.1090/tran/8960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider which families of finite simple groups <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have the property that for each <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exists <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue upper G EndAbsoluteValue greater-than-or-equal-to upper N\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|G| \\\\ge N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S comma upper T\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">S, T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are normal subsets of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with at least <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon StartAbsoluteValue upper G EndAbsoluteValue\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon |G|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements each, then every non-trivial element of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the product of an element of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an element of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T\\\"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper P normal upper S normal upper L Subscript n Baseline left-parenthesis q right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">P</mml:mi> <mml:mi mathvariant=\\\"normal\\\">S</mml:mi> <mml:mi mathvariant=\\\"normal\\\">L</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {PSL}_n(q)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is fixed and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n right-arrow normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\to \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. However, in the case <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S equals upper T\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">S=T</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> alternating this holds with an explicit bound on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon\\\"> <mml:semantics> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Related problems and applications are also discussed. In particular we show that, if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"w 1 comma w 2\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">w_1, w_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are non-trivial words, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite simple group of Lie type of bounded rank, and for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g element-of upper G\\\"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g \\\\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P Subscript w 1 left-parenthesis upper G right-parenthesis comma w 2 left-parenthesis upper G right-parenthesis Baseline left-parenthesis g right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">P_{w_1(G),w_2(G)}(g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the probability that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g 1 g 2 equals g\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>g</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g_1g_2 = g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g Subscript i Baseline element-of w Subscript i Baseline left-parenthesis upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">g_i \\\\in w_i(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are chosen uniformly and independently, then, as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue upper G EndAbsoluteValue right-arrow normal infinity\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|G| \\\\to \\\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the distribution <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P Subscript w 1 left-parenthesis upper G right-parenthesis comma w 2 left-parenthesis upper G right-parenthesis\\\"> <mml:semantics> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">P_{w_1(G),w_2(G)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> tends to the uniform distribution on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript normal infinity\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^{\\\\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8960\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8960","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑有限单群G G的哪些族具有这样的性质:对于每一个ε &gt;0 \epsilon &gt;0存在N &gt;0 N &gt;0使得,如果|G|≥N |G| \ge N和S, T, S, T是G的正规子集,且每个子集至少有λ |G| \epsilon |G|元素,则G的每一个非平凡元素是S的一个元素与T的一个元素的乘积。我们证明了这对于有界秩的Lie型有限简单群具有强而有效的意义,而对于形式为PSL n(q) \mathrm PSL_n{(q)的交替群或群(其中q q是固定的且n→∞n }\to\infty)则不成立。然而,在S=T S=T和G G交替的情况下,这与N N上的显式界限以λ \epsilon表示成立。讨论了相关问题及应用。特别地,我们证明了如果w1, w2w_1,w_2是非平凡词,G G是有界秩的Lie型有限简单群,并且对于G∈G G \in G, P w 1(G),w 2(G)(G) {P_w_1(G),w_2(G)(G)}表示G 1 G 2 = G g_1g_2 = G的概率,其中G i∈w i(G) g_i \in w_i(G)是一致且独立地选择的,则,如|G|→∞|G| \to\infty,分布pw 1(G) w 2(G) {P_w_1(G) w_2(G)}趋向于G上关于L∞L^ {\infty范数的均匀分布。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of normal subsets
In this paper we consider which families of finite simple groups G G have the property that for each ϵ > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L L^{\infty } norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信