麦克唐纳群在一个参数中的结构

Pub Date : 2023-11-08 DOI:10.1515/jgth-2023-0036
Alexander Montoya Ocampo, Fernando Szechtman
{"title":"麦克唐纳群在一个参数中的结构","authors":"Alexander Montoya Ocampo, Fernando Szechtman","doi":"10.1515/jgth-2023-0036","DOIUrl":null,"url":null,"abstract":"Abstract Consider the Macdonald groups <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">⟨</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo fence=\"true\" lspace=\"0em\" rspace=\"0em\">∣</m:mo> <m:mrow> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:msup> <m:mi>A</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> <m:mo rspace=\"0.337em\">,</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>B</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:msup> <m:mi>B</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">⟩</m:mo> </m:mrow> </m:mrow> </m:math> G(\\alpha)=\\langle A,B\\mid A^{[A,B]}=A^{\\alpha},\\,B^{[B,A]}=B^{\\alpha}\\rangle , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">Z</m:mi> </m:mrow> </m:math> \\alpha\\in\\mathbb{Z} . We fill a gap in Macdonald’s proof that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> G(\\alpha) is always nilpotent, and proceed to determine the order, upper and lower central series, nilpotency class, and exponent of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> G(\\alpha) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structure of the Macdonald groups in one parameter\",\"authors\":\"Alexander Montoya Ocampo, Fernando Szechtman\",\"doi\":\"10.1515/jgth-2023-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Consider the Macdonald groups <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">⟨</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo fence=\\\"true\\\" lspace=\\\"0em\\\" rspace=\\\"0em\\\">∣</m:mo> <m:mrow> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:msup> <m:mi>A</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> <m:mo rspace=\\\"0.337em\\\">,</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi>B</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:msup> <m:mi>B</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">⟩</m:mo> </m:mrow> </m:mrow> </m:math> G(\\\\alpha)=\\\\langle A,B\\\\mid A^{[A,B]}=A^{\\\\alpha},\\\\,B^{[B,A]}=B^{\\\\alpha}\\\\rangle , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"double-struck\\\">Z</m:mi> </m:mrow> </m:math> \\\\alpha\\\\in\\\\mathbb{Z} . We fill a gap in Macdonald’s proof that <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> G(\\\\alpha) is always nilpotent, and proceed to determine the order, upper and lower central series, nilpotency class, and exponent of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> G(\\\\alpha) .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑麦克唐纳群G≠(α)=⟨A,B∣A [A,B]=A α,B [B,A]=B α⟩G(\alpha)= \langle A,B \mid A^{[A,B]}=A^ {\alpha},\,B^{[B,A]}=B^ {\alpha}\rangle, α∈Z \alpha\in\mathbb{Z}。我们填补了Macdonald证明G(α) G(\alpha)总是幂零的空白,并进一步确定了G(α) G(\alpha)的阶、上、下中心级数、幂零类和指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Structure of the Macdonald groups in one parameter
Abstract Consider the Macdonald groups G ( α ) = A , B A [ A , B ] = A α , B [ B , A ] = B α G(\alpha)=\langle A,B\mid A^{[A,B]}=A^{\alpha},\,B^{[B,A]}=B^{\alpha}\rangle , α Z \alpha\in\mathbb{Z} . We fill a gap in Macdonald’s proof that G ( α ) G(\alpha) is always nilpotent, and proceed to determine the order, upper and lower central series, nilpotency class, and exponent of G ( α ) G(\alpha) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信