{"title":"类增材制造通道流动的粗糙度分辨大涡模拟","authors":"Serge Meynet, Alexis Barge, Vincent Moureau, Guillaume Balarac, Ghislain Lartigue, Abdellah Hadjadj","doi":"10.1115/1.4062245","DOIUrl":null,"url":null,"abstract":"Abstract In the last decade, progresses in additive manufacturing (AM) have paved the way for optimized heat exchangers whose disruptive design will heavily rely on predictive numerical simulations. However, due to typical roughness induced by AM, current wall models used in steady and unsteady 3D Navier–Stokes simulations do not take into account such characteristics. For the development and assessment of novel wall models for AM, a high-fidelity roughness-resolved large-eddy simulation (RRLES) database is built. This article describes the numerical setup and the methodology used for conducting RRLES, from surface generation to postprocessing. In addition, three different cases representing two printing directions plus a streamwise and spanwise isotropic case are investigated. While the roughness distributions are the same in the three cases, the effective slope (ES) is very different, and the impact of this parameter on turbulence and heat transfer is analyzed at different Reynolds numbers.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roughness-Resolved Large-Eddy Simulation of Additive Manufacturing-Like Channel Flows\",\"authors\":\"Serge Meynet, Alexis Barge, Vincent Moureau, Guillaume Balarac, Ghislain Lartigue, Abdellah Hadjadj\",\"doi\":\"10.1115/1.4062245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the last decade, progresses in additive manufacturing (AM) have paved the way for optimized heat exchangers whose disruptive design will heavily rely on predictive numerical simulations. However, due to typical roughness induced by AM, current wall models used in steady and unsteady 3D Navier–Stokes simulations do not take into account such characteristics. For the development and assessment of novel wall models for AM, a high-fidelity roughness-resolved large-eddy simulation (RRLES) database is built. This article describes the numerical setup and the methodology used for conducting RRLES, from surface generation to postprocessing. In addition, three different cases representing two printing directions plus a streamwise and spanwise isotropic case are investigated. While the roughness distributions are the same in the three cases, the effective slope (ES) is very different, and the impact of this parameter on turbulence and heat transfer is analyzed at different Reynolds numbers.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062245\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062245","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Roughness-Resolved Large-Eddy Simulation of Additive Manufacturing-Like Channel Flows
Abstract In the last decade, progresses in additive manufacturing (AM) have paved the way for optimized heat exchangers whose disruptive design will heavily rely on predictive numerical simulations. However, due to typical roughness induced by AM, current wall models used in steady and unsteady 3D Navier–Stokes simulations do not take into account such characteristics. For the development and assessment of novel wall models for AM, a high-fidelity roughness-resolved large-eddy simulation (RRLES) database is built. This article describes the numerical setup and the methodology used for conducting RRLES, from surface generation to postprocessing. In addition, three different cases representing two printing directions plus a streamwise and spanwise isotropic case are investigated. While the roughness distributions are the same in the three cases, the effective slope (ES) is very different, and the impact of this parameter on turbulence and heat transfer is analyzed at different Reynolds numbers.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.