利用深度学习提高共聚焦荧光显微镜的图像分辨率

IF 15.7 Q1 OPTICS
Boyi Huang, Jia Li, Bowen Yao, Zhigang Yang, Edmund Y. Lam, Jia Zhang, Wei Yan, Junle Qu
{"title":"利用深度学习提高共聚焦荧光显微镜的图像分辨率","authors":"Boyi Huang, Jia Li, Bowen Yao, Zhigang Yang, Edmund Y. Lam, Jia Zhang, Wei Yan, Junle Qu","doi":"10.1186/s43074-022-00077-x","DOIUrl":null,"url":null,"abstract":"Abstract Super-resolution optical imaging is crucial to the study of cellular processes. Current super-resolution fluorescence microscopy is restricted by the need of special fluorophores or sophisticated optical systems, or long acquisition and computational times. In this work, we present a deep-learning-based super-resolution technique of confocal microscopy. We devise a two-channel attention network (TCAN), which takes advantage of both spatial representations and frequency contents to learn a more precise mapping from low-resolution images to high-resolution ones. This scheme is robust against changes in the pixel size and the imaging setup, enabling the optimal model to generalize to different fluorescence microscopy modalities unseen in the training set. Our algorithm is validated on diverse biological structures and dual-color confocal images of actin-microtubules, improving the resolution from ~ 230 nm to ~ 110 nm. Last but not least, we demonstrate live-cell super-resolution imaging by revealing the detailed structures and dynamic instability of microtubules.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"32 1","pages":"0"},"PeriodicalIF":15.7000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Enhancing image resolution of confocal fluorescence microscopy with deep learning\",\"authors\":\"Boyi Huang, Jia Li, Bowen Yao, Zhigang Yang, Edmund Y. Lam, Jia Zhang, Wei Yan, Junle Qu\",\"doi\":\"10.1186/s43074-022-00077-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Super-resolution optical imaging is crucial to the study of cellular processes. Current super-resolution fluorescence microscopy is restricted by the need of special fluorophores or sophisticated optical systems, or long acquisition and computational times. In this work, we present a deep-learning-based super-resolution technique of confocal microscopy. We devise a two-channel attention network (TCAN), which takes advantage of both spatial representations and frequency contents to learn a more precise mapping from low-resolution images to high-resolution ones. This scheme is robust against changes in the pixel size and the imaging setup, enabling the optimal model to generalize to different fluorescence microscopy modalities unseen in the training set. Our algorithm is validated on diverse biological structures and dual-color confocal images of actin-microtubules, improving the resolution from ~ 230 nm to ~ 110 nm. Last but not least, we demonstrate live-cell super-resolution imaging by revealing the detailed structures and dynamic instability of microtubules.\",\"PeriodicalId\":93483,\"journal\":{\"name\":\"PhotoniX\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhotoniX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43074-022-00077-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-022-00077-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 6

摘要

超分辨率光学成像对于细胞过程的研究至关重要。当前的超分辨率荧光显微镜受限于需要特殊的荧光团或复杂的光学系统,或较长的采集和计算时间。在这项工作中,我们提出了一种基于深度学习的共聚焦显微镜超分辨率技术。我们设计了一个双通道注意网络(TCAN),它利用空间表征和频率内容来学习从低分辨率图像到高分辨率图像的更精确映射。该方案对像素大小和成像设置的变化具有鲁棒性,使最佳模型能够推广到训练集中看不到的不同荧光显微镜模式。该算法在多种生物结构和肌动蛋白微管双色共聚焦图像上进行了验证,将分辨率从~ 230 nm提高到~ 110 nm。最后但并非最不重要的是,我们通过揭示微管的详细结构和动态不稳定性来展示活细胞超分辨率成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing image resolution of confocal fluorescence microscopy with deep learning

Enhancing image resolution of confocal fluorescence microscopy with deep learning
Abstract Super-resolution optical imaging is crucial to the study of cellular processes. Current super-resolution fluorescence microscopy is restricted by the need of special fluorophores or sophisticated optical systems, or long acquisition and computational times. In this work, we present a deep-learning-based super-resolution technique of confocal microscopy. We devise a two-channel attention network (TCAN), which takes advantage of both spatial representations and frequency contents to learn a more precise mapping from low-resolution images to high-resolution ones. This scheme is robust against changes in the pixel size and the imaging setup, enabling the optimal model to generalize to different fluorescence microscopy modalities unseen in the training set. Our algorithm is validated on diverse biological structures and dual-color confocal images of actin-microtubules, improving the resolution from ~ 230 nm to ~ 110 nm. Last but not least, we demonstrate live-cell super-resolution imaging by revealing the detailed structures and dynamic instability of microtubules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信