剩余交集和线性幂

IF 1.2 2区 数学 Q1 MATHEMATICS
David Eisenbud, Craig Huneke, Bernd Ulrich
{"title":"剩余交集和线性幂","authors":"David Eisenbud, Craig Huneke, Bernd Ulrich","doi":"10.1090/btran/127","DOIUrl":null,"url":null,"abstract":"If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=\"application/x-tex\">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an ideal in a Gorenstein ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S slash upper I\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is Cohen-Macaulay, then the same is true for any linked ideal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I prime\"> <mml:semantics> <mml:msup> <mml:mi>I</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">I’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">L_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of minors of a generic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 times n\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2 \\times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than 3\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n&gt;3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=\"application/x-tex\">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For example, suppose that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the residual intersection of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">L_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 n minus 4\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2n-4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> general quadratic forms in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript n\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">L_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this situation we analyze <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S slash upper K\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S/K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and show that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Superscript n minus 3 Baseline left-parenthesis upper S slash upper K right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>I</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">I^{n-3}(S/K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a self-dual maximal Cohen-Macaulay <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S slash upper K\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">S/K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module with linear free resolution over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\"application/x-tex\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Residual intersections and linear powers\",\"authors\":\"David Eisenbud, Craig Huneke, Bernd Ulrich\",\"doi\":\"10.1090/btran/127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I\\\"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an ideal in a Gorenstein ring <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S slash upper I\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">S/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is Cohen-Macaulay, then the same is true for any linked ideal <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I prime\\\"> <mml:semantics> <mml:msup> <mml:mi>I</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">I’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript n\\\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">L_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of minors of a generic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 times n\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2 \\\\times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix when <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than 3\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n&gt;3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I\\\"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For example, suppose that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the residual intersection of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript n\\\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">L_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 n minus 4\\\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2n-4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> general quadratic forms in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript n\\\"> <mml:semantics> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">L_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this situation we analyze <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S slash upper K\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">S/K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and show that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper I Superscript n minus 3 Baseline left-parenthesis upper S slash upper K right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>I</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">I^{n-3}(S/K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a self-dual maximal Cohen-Macaulay <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S slash upper K\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">S/K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module with linear free resolution over <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S\\\"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/127\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/127","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果I I是Gorenstein环S S中的理想,并且S/I S/I是Cohen-Macaulay,那么对于任何连接的理想I ' I '也是如此;但这种说法只在限制性假设下对高余维的残差交成立,即使是像一般2 × n 2 \ × n矩阵的子阵的理想ln L_{n}这样简单的理想也不能满足,当n >3 >在本文中,我们开始研究一种不同的Cohen-Macaulay性质,该性质适用于最大余维数(有趣的)的某些一般残差相交,它比I I的解析扩展小1。例如,假设K K是ln L_{n}中ln L_{n} × 2n−4的2n-4一般二次型的残差交。在这种情况下,我们分析了S/K S/K,并证明In−3 (S/K) I^{n-3}(S/K)是一个自对偶极大Cohen-Macaulay S/K S/K -模,在S S上具有线性自由分辨率。本文的技术核心是关于解析扩散1的理想的结果,它的高幂是线性表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual intersections and linear powers
If I I is an ideal in a Gorenstein ring S S , and S / I S/I is Cohen-Macaulay, then the same is true for any linked ideal I I’ ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal L n L_{n} of minors of a generic 2 × n 2 \times n matrix when n > 3 n>3 . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I I . For example, suppose that K K is the residual intersection of L n L_{n} by 2 n 4 2n-4 general quadratic forms in L n L_{n} . In this situation we analyze S / K S/K and show that I n 3 ( S / K ) I^{n-3}(S/K) is a self-dual maximal Cohen-Macaulay S / K S/K -module with linear free resolution over S S . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信