{"title":"利用深度学习辅助三电传感器进行车辆分类","authors":"Seval Kinden, Zeynep Batmaz","doi":"10.1007/s13369-023-08394-4","DOIUrl":null,"url":null,"abstract":"<div><p>Development of a reliable and intelligent traffic monitoring system is highly desired to improve the transportation safety and establish future transportation plans due to the fast growth of vehicle population. Vehicle classification is one of the most critical subsystems where existing ones suffer from privacy concerns, requirements of complicated systems, and high maintenance cost. This paper reports a novel vehicle classification method by utilizing a triboelectric sensor to accurately identify vehicles. Novelty of this method originates from using triboelectric sensor and machine learning method with important advantages over current alternatives by providing an easy installation, simple operation, noninvasive measurement, cost-effective manufacturing, and highly accurate classification. To make a classification, vehicle toys’ signals were acquired from triboelectric sensor and then applied to a deep learning algorithm. The 1932 sensor output data were grouped into a set of seven vehicle toys with different wheelbases, and number of tires passing on are used to train and optimize 1D-CNN model. The utilized 1D-CNN model achieved accuracy, f1-score, precision, and recall as 96.38%, 0.9638, 0.9658, and 0.9637, respectively.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle Classification Using Deep Learning-Assisted Triboelectric Sensor\",\"authors\":\"Seval Kinden, Zeynep Batmaz\",\"doi\":\"10.1007/s13369-023-08394-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Development of a reliable and intelligent traffic monitoring system is highly desired to improve the transportation safety and establish future transportation plans due to the fast growth of vehicle population. Vehicle classification is one of the most critical subsystems where existing ones suffer from privacy concerns, requirements of complicated systems, and high maintenance cost. This paper reports a novel vehicle classification method by utilizing a triboelectric sensor to accurately identify vehicles. Novelty of this method originates from using triboelectric sensor and machine learning method with important advantages over current alternatives by providing an easy installation, simple operation, noninvasive measurement, cost-effective manufacturing, and highly accurate classification. To make a classification, vehicle toys’ signals were acquired from triboelectric sensor and then applied to a deep learning algorithm. The 1932 sensor output data were grouped into a set of seven vehicle toys with different wheelbases, and number of tires passing on are used to train and optimize 1D-CNN model. The utilized 1D-CNN model achieved accuracy, f1-score, precision, and recall as 96.38%, 0.9638, 0.9658, and 0.9637, respectively.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-023-08394-4\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-023-08394-4","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Vehicle Classification Using Deep Learning-Assisted Triboelectric Sensor
Development of a reliable and intelligent traffic monitoring system is highly desired to improve the transportation safety and establish future transportation plans due to the fast growth of vehicle population. Vehicle classification is one of the most critical subsystems where existing ones suffer from privacy concerns, requirements of complicated systems, and high maintenance cost. This paper reports a novel vehicle classification method by utilizing a triboelectric sensor to accurately identify vehicles. Novelty of this method originates from using triboelectric sensor and machine learning method with important advantages over current alternatives by providing an easy installation, simple operation, noninvasive measurement, cost-effective manufacturing, and highly accurate classification. To make a classification, vehicle toys’ signals were acquired from triboelectric sensor and then applied to a deep learning algorithm. The 1932 sensor output data were grouped into a set of seven vehicle toys with different wheelbases, and number of tires passing on are used to train and optimize 1D-CNN model. The utilized 1D-CNN model achieved accuracy, f1-score, precision, and recall as 96.38%, 0.9638, 0.9658, and 0.9637, respectively.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.