{"title":"有限体积齐次空间上随机游动的收敛性","authors":"Prohaska, Roland","doi":"10.1080/14689367.2023.2271407","DOIUrl":null,"url":null,"abstract":"We investigate three aspects of weak* convergence of the $n$-step distributions of random walks on finite volume homogeneous spaces $G/\\Gamma$ of semisimple real Lie groups. First, we look into the obvious obstruction to the upgrade from Cesaro to non-averaged convergence: periodicity. We give examples where it occurs and conditions under which it does not. In a second part, we prove convergence towards Haar measure with exponential speed from almost every starting point. Finally, we establish a strong uniformity property for the Cesaro convergence towards Haar measure for uniquely ergodic random walks.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Aspects of convergence of random walks on finite volume homogeneous spaces\",\"authors\":\"Prohaska, Roland\",\"doi\":\"10.1080/14689367.2023.2271407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate three aspects of weak* convergence of the $n$-step distributions of random walks on finite volume homogeneous spaces $G/\\\\Gamma$ of semisimple real Lie groups. First, we look into the obvious obstruction to the upgrade from Cesaro to non-averaged convergence: periodicity. We give examples where it occurs and conditions under which it does not. In a second part, we prove convergence towards Haar measure with exponential speed from almost every starting point. Finally, we establish a strong uniformity property for the Cesaro convergence towards Haar measure for uniquely ergodic random walks.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2271407\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2271407","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Aspects of convergence of random walks on finite volume homogeneous spaces
We investigate three aspects of weak* convergence of the $n$-step distributions of random walks on finite volume homogeneous spaces $G/\Gamma$ of semisimple real Lie groups. First, we look into the obvious obstruction to the upgrade from Cesaro to non-averaged convergence: periodicity. We give examples where it occurs and conditions under which it does not. In a second part, we prove convergence towards Haar measure with exponential speed from almost every starting point. Finally, we establish a strong uniformity property for the Cesaro convergence towards Haar measure for uniquely ergodic random walks.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences