电磁-轴振动耦合导致的变压器轴向短路电磁力峰值时移现象

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi Zhao, Mingkai Jin, Tao Wen, Penghong Guo, Weijiang Chen
{"title":"电磁-轴振动耦合导致的变压器轴向短路电磁力峰值时移现象","authors":"Yi Zhao,&nbsp;Mingkai Jin,&nbsp;Tao Wen,&nbsp;Penghong Guo,&nbsp;Weijiang Chen","doi":"10.1049/elp2.12381","DOIUrl":null,"url":null,"abstract":"<p>Accurately calculating axial electromagnetic force is essential to analyse transformer winding axial stability. Prior research has mainly focused on the effect of winding structure on static axial electromagnetic force and studying vibration by substituting the static force in a time-varying function. However, the coupling effect between axial electromagnetic force and winding vibration has not been addressed, and no calculation method for the axial electromagnetic force that considers both winding meso-structures and vibration coupling effects has been proposed. Previously the authors presented an electromagnetic force calculation model that considers winding structure characteristics, and an iterative algorithm for magnetic-structure coupling calculation. Currently, the winding vibration model was first proposed and the dynamic calculation method was formulated. By applying the method to a typical 110kV transformer, the spatial-temporal distribution of winding axial short-circuit electromagnetic force was obtained. It was found that the peak value of the axial short-circuit electromagnetic force of some windings appears at the second or third peak moment of the short-circuit current, which is called as peak time shift phenomenon. Further stress analysis indicates that existing evaluation methods may overestimate the short-circuit resistance of windings by only considering short-circuit electromagnetic force under maximum peak of short-circuit current.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12381","citationCount":"0","resultStr":"{\"title\":\"A peak time shifting phenomenon in transformer axial short-circuit electromagnetic force due to the coupling of electromagnetic-axial vibration\",\"authors\":\"Yi Zhao,&nbsp;Mingkai Jin,&nbsp;Tao Wen,&nbsp;Penghong Guo,&nbsp;Weijiang Chen\",\"doi\":\"10.1049/elp2.12381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurately calculating axial electromagnetic force is essential to analyse transformer winding axial stability. Prior research has mainly focused on the effect of winding structure on static axial electromagnetic force and studying vibration by substituting the static force in a time-varying function. However, the coupling effect between axial electromagnetic force and winding vibration has not been addressed, and no calculation method for the axial electromagnetic force that considers both winding meso-structures and vibration coupling effects has been proposed. Previously the authors presented an electromagnetic force calculation model that considers winding structure characteristics, and an iterative algorithm for magnetic-structure coupling calculation. Currently, the winding vibration model was first proposed and the dynamic calculation method was formulated. By applying the method to a typical 110kV transformer, the spatial-temporal distribution of winding axial short-circuit electromagnetic force was obtained. It was found that the peak value of the axial short-circuit electromagnetic force of some windings appears at the second or third peak moment of the short-circuit current, which is called as peak time shift phenomenon. Further stress analysis indicates that existing evaluation methods may overestimate the short-circuit resistance of windings by only considering short-circuit electromagnetic force under maximum peak of short-circuit current.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12381\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12381\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12381","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确计算轴向电磁力对于分析变压器绕组的轴向稳定性至关重要。之前的研究主要集中在绕组结构对静态轴向电磁力的影响,以及通过将静态力代入时变函数来研究振动。然而,轴向电磁力与绕组振动之间的耦合效应尚未得到解决,也没有提出同时考虑绕组中间结构和振动耦合效应的轴向电磁力计算方法。在此之前,作者提出了考虑绕组结构特征的电磁力计算模型,以及磁结构耦合计算的迭代算法。目前,首先提出了绕组振动模型,并制定了动态计算方法。将该方法应用于典型的 110kV 变压器,得到了绕组轴向短路电磁力的时空分布。结果发现,部分绕组轴向短路电磁力的峰值出现在短路电流的第二或第三个峰值时刻,即峰值时移现象。进一步的应力分析表明,现有的评估方法只考虑短路电流最大峰值下的短路电磁力,可能会高估绕组的短路电阻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A peak time shifting phenomenon in transformer axial short-circuit electromagnetic force due to the coupling of electromagnetic-axial vibration

A peak time shifting phenomenon in transformer axial short-circuit electromagnetic force due to the coupling of electromagnetic-axial vibration

Accurately calculating axial electromagnetic force is essential to analyse transformer winding axial stability. Prior research has mainly focused on the effect of winding structure on static axial electromagnetic force and studying vibration by substituting the static force in a time-varying function. However, the coupling effect between axial electromagnetic force and winding vibration has not been addressed, and no calculation method for the axial electromagnetic force that considers both winding meso-structures and vibration coupling effects has been proposed. Previously the authors presented an electromagnetic force calculation model that considers winding structure characteristics, and an iterative algorithm for magnetic-structure coupling calculation. Currently, the winding vibration model was first proposed and the dynamic calculation method was formulated. By applying the method to a typical 110kV transformer, the spatial-temporal distribution of winding axial short-circuit electromagnetic force was obtained. It was found that the peak value of the axial short-circuit electromagnetic force of some windings appears at the second or third peak moment of the short-circuit current, which is called as peak time shift phenomenon. Further stress analysis indicates that existing evaluation methods may overestimate the short-circuit resistance of windings by only considering short-circuit electromagnetic force under maximum peak of short-circuit current.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信