Ha Thi Le Nguyen, Shizuka Suetsugu, Yuna Nakamura, Zita Demeter, Shao-Hui Zheng, Daisuke Fujita
{"title":"水稻穗部维管束数量稳定qtl的鉴定与表征(<i>Oryza sativa</i>)l .)","authors":"Ha Thi Le Nguyen, Shizuka Suetsugu, Yuna Nakamura, Zita Demeter, Shao-Hui Zheng, Daisuke Fujita","doi":"10.1270/jsbbs.23013","DOIUrl":null,"url":null,"abstract":"A large vascular bundle number (VBN) in the panicle neck in rice (Oryza sativa L.) is related to the ability to transport assimilates from stem and leaf to reproductive organs during seed maturation. Several quantitative trait loci (QTLs) for VBN have been identified by using segregating populations derived from a cross between indica and japonica rice cultivars. However, the detailed location, effect, and interaction of QTLs for VBN were not understood well. Here, to elucidate the genetic basis of VBN, we identified three stable QTLs for VBN—qVBN5, qVBN6 and qVBN11—by using 71 recombinant inbred lines derived from a cross between indica ‘IR24’ and japonica ‘Asominori’. We confirmed their positions and characterized their effects by using chromosome segment substitution lines (CSSLs) with an ‘IR24’ genetic background. qVBN6 had the most substantial effect on VBN, followed by qVBN11 and qVBN5. We developed pyramided lines carrying two QTLs for VBN to estimate their interaction. The combination of qVBN6 and qVBN11 accumulated VBN negatively in the pyramided lines owing to the independent actions of each QTL. The QTLs detected for VBN will enhance our understanding of genetic mechanisms of VBN and can be used in rice breeding.","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"29 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of stable QTLs for vascular bundle number at the panicle neck in rice (<i>Oryza sativa</i> L.)\",\"authors\":\"Ha Thi Le Nguyen, Shizuka Suetsugu, Yuna Nakamura, Zita Demeter, Shao-Hui Zheng, Daisuke Fujita\",\"doi\":\"10.1270/jsbbs.23013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large vascular bundle number (VBN) in the panicle neck in rice (Oryza sativa L.) is related to the ability to transport assimilates from stem and leaf to reproductive organs during seed maturation. Several quantitative trait loci (QTLs) for VBN have been identified by using segregating populations derived from a cross between indica and japonica rice cultivars. However, the detailed location, effect, and interaction of QTLs for VBN were not understood well. Here, to elucidate the genetic basis of VBN, we identified three stable QTLs for VBN—qVBN5, qVBN6 and qVBN11—by using 71 recombinant inbred lines derived from a cross between indica ‘IR24’ and japonica ‘Asominori’. We confirmed their positions and characterized their effects by using chromosome segment substitution lines (CSSLs) with an ‘IR24’ genetic background. qVBN6 had the most substantial effect on VBN, followed by qVBN11 and qVBN5. We developed pyramided lines carrying two QTLs for VBN to estimate their interaction. The combination of qVBN6 and qVBN11 accumulated VBN negatively in the pyramided lines owing to the independent actions of each QTL. The QTLs detected for VBN will enhance our understanding of genetic mechanisms of VBN and can be used in rice breeding.\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.23013\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1270/jsbbs.23013","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification and characterization of stable QTLs for vascular bundle number at the panicle neck in rice (<i>Oryza sativa</i> L.)
A large vascular bundle number (VBN) in the panicle neck in rice (Oryza sativa L.) is related to the ability to transport assimilates from stem and leaf to reproductive organs during seed maturation. Several quantitative trait loci (QTLs) for VBN have been identified by using segregating populations derived from a cross between indica and japonica rice cultivars. However, the detailed location, effect, and interaction of QTLs for VBN were not understood well. Here, to elucidate the genetic basis of VBN, we identified three stable QTLs for VBN—qVBN5, qVBN6 and qVBN11—by using 71 recombinant inbred lines derived from a cross between indica ‘IR24’ and japonica ‘Asominori’. We confirmed their positions and characterized their effects by using chromosome segment substitution lines (CSSLs) with an ‘IR24’ genetic background. qVBN6 had the most substantial effect on VBN, followed by qVBN11 and qVBN5. We developed pyramided lines carrying two QTLs for VBN to estimate their interaction. The combination of qVBN6 and qVBN11 accumulated VBN negatively in the pyramided lines owing to the independent actions of each QTL. The QTLs detected for VBN will enhance our understanding of genetic mechanisms of VBN and can be used in rice breeding.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.