{"title":"入侵的黑刺槐和蓝桉是其他物种入侵的驱动因素吗?测定其对发芽的化感作用","authors":"Sheila F. Riveiro, Óscar Cruz, Otilia Reyes","doi":"10.1007/s11056-023-10001-1","DOIUrl":null,"url":null,"abstract":"Abstract Many invasive alien species (IAS) produce secondary metabolites that affect how other plants function (allelopathic compounds) and can drive other species invasion, as proposed by the invasional meltdown hypothesis. Acacia melanoxylon and Eucalyptus globulus are two of such species. In this study, we analyzed the germination response of seven IAS ( Acacia dealbata , Acacia mearnsii , Acacia melanoxylon , Acacia longifolia , Eucalyptus globulus , Paraserianthes lophantha , Phytolacca americana ) and a native biotest species ( Lactuca sativa ) to the application of two different aqueous extracts at two different concentrations of donor species A. melanoxylon and E. globulus . Extract compounds were identified by UHPLC-ESI-QTOF-MS. Eucalyptus aqueous extracts significantly reduced germination in three species ( A. dealbata, E. globulus, P. americana ). The germination of all the species tested was reduced with acacia aqueous extracts. Our results support the postulates of the Biochemical Recognition Hypothesis in that seeds gauge establishment potential based on phytochemical release of other plants. Furthermore, A. melanoxylon and E. globulus lowered their own germination, suggesting that these species exhibit intraspecific biochemical recognition. We also found support for the Novel Weapons Hypothesis in the case of L. sativa as a native species. Our research shows that phytochemicals are a component of plant-plant interactions, including the invasion process.","PeriodicalId":19228,"journal":{"name":"New Forests","volume":"41 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are the invasive Acacia melanoxylon and Eucalyptus globulus drivers of other species invasion? Testing their allelochemical effects on germination\",\"authors\":\"Sheila F. Riveiro, Óscar Cruz, Otilia Reyes\",\"doi\":\"10.1007/s11056-023-10001-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many invasive alien species (IAS) produce secondary metabolites that affect how other plants function (allelopathic compounds) and can drive other species invasion, as proposed by the invasional meltdown hypothesis. Acacia melanoxylon and Eucalyptus globulus are two of such species. In this study, we analyzed the germination response of seven IAS ( Acacia dealbata , Acacia mearnsii , Acacia melanoxylon , Acacia longifolia , Eucalyptus globulus , Paraserianthes lophantha , Phytolacca americana ) and a native biotest species ( Lactuca sativa ) to the application of two different aqueous extracts at two different concentrations of donor species A. melanoxylon and E. globulus . Extract compounds were identified by UHPLC-ESI-QTOF-MS. Eucalyptus aqueous extracts significantly reduced germination in three species ( A. dealbata, E. globulus, P. americana ). The germination of all the species tested was reduced with acacia aqueous extracts. Our results support the postulates of the Biochemical Recognition Hypothesis in that seeds gauge establishment potential based on phytochemical release of other plants. Furthermore, A. melanoxylon and E. globulus lowered their own germination, suggesting that these species exhibit intraspecific biochemical recognition. We also found support for the Novel Weapons Hypothesis in the case of L. sativa as a native species. Our research shows that phytochemicals are a component of plant-plant interactions, including the invasion process.\",\"PeriodicalId\":19228,\"journal\":{\"name\":\"New Forests\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Forests\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11056-023-10001-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Forests","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11056-023-10001-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Are the invasive Acacia melanoxylon and Eucalyptus globulus drivers of other species invasion? Testing their allelochemical effects on germination
Abstract Many invasive alien species (IAS) produce secondary metabolites that affect how other plants function (allelopathic compounds) and can drive other species invasion, as proposed by the invasional meltdown hypothesis. Acacia melanoxylon and Eucalyptus globulus are two of such species. In this study, we analyzed the germination response of seven IAS ( Acacia dealbata , Acacia mearnsii , Acacia melanoxylon , Acacia longifolia , Eucalyptus globulus , Paraserianthes lophantha , Phytolacca americana ) and a native biotest species ( Lactuca sativa ) to the application of two different aqueous extracts at two different concentrations of donor species A. melanoxylon and E. globulus . Extract compounds were identified by UHPLC-ESI-QTOF-MS. Eucalyptus aqueous extracts significantly reduced germination in three species ( A. dealbata, E. globulus, P. americana ). The germination of all the species tested was reduced with acacia aqueous extracts. Our results support the postulates of the Biochemical Recognition Hypothesis in that seeds gauge establishment potential based on phytochemical release of other plants. Furthermore, A. melanoxylon and E. globulus lowered their own germination, suggesting that these species exhibit intraspecific biochemical recognition. We also found support for the Novel Weapons Hypothesis in the case of L. sativa as a native species. Our research shows that phytochemicals are a component of plant-plant interactions, including the invasion process.
期刊介绍:
New Forests publishes original papers on the fundamental and applied aspects of afforestation and reforestation for a broad international audience of scientists and practitioners. Journal articles concern the reproduction of trees and forests originating from seed, planted seedlings or coppice for the purposes of resource protection, timber production, and agro-forestry. Natural and artificial methods of regeneration and all stand structures from even-aged to uneven-aged are considered. Topics include general silviculture, plant physiology, genetics, biotechnology, ecology, economics, protection, and management of all stages in the process of afforestation and reforestation.