{"title":"基于子空间的大规模校园网流量异常检测","authors":"Xiaofeng Zhao, Qiubing Wu","doi":"10.1155/2023/8489644","DOIUrl":null,"url":null,"abstract":"With the continuous development of information technology and the continuous progress of traffic bandwidth, the types and methods of network attacks have become more complex, posing a great threat to the large-scale campus network environment. To solve this problem, a network traffic anomaly detection model based on subspace information entropy flow matrix and a subspace anomaly weight clustering network traffic anomaly detection model combined with density anomaly weight and clustering ideas are proposed. Under the two test sets of public dataset and collected campus network data information of a university, the detection performance of the proposed anomaly detection method is compared with other anomaly detection algorithm models. The results show that the proposed detection model is superior to other models in speed and accuracy under the open dataset. And the two traffic anomaly detection models proposed in the study can well complete the task of network traffic anomaly detection under the large-scale campus network environment.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspace-Based Anomaly Detection for Large-Scale Campus Network Traffic\",\"authors\":\"Xiaofeng Zhao, Qiubing Wu\",\"doi\":\"10.1155/2023/8489644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous development of information technology and the continuous progress of traffic bandwidth, the types and methods of network attacks have become more complex, posing a great threat to the large-scale campus network environment. To solve this problem, a network traffic anomaly detection model based on subspace information entropy flow matrix and a subspace anomaly weight clustering network traffic anomaly detection model combined with density anomaly weight and clustering ideas are proposed. Under the two test sets of public dataset and collected campus network data information of a university, the detection performance of the proposed anomaly detection method is compared with other anomaly detection algorithm models. The results show that the proposed detection model is superior to other models in speed and accuracy under the open dataset. And the two traffic anomaly detection models proposed in the study can well complete the task of network traffic anomaly detection under the large-scale campus network environment.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8489644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8489644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Subspace-Based Anomaly Detection for Large-Scale Campus Network Traffic
With the continuous development of information technology and the continuous progress of traffic bandwidth, the types and methods of network attacks have become more complex, posing a great threat to the large-scale campus network environment. To solve this problem, a network traffic anomaly detection model based on subspace information entropy flow matrix and a subspace anomaly weight clustering network traffic anomaly detection model combined with density anomaly weight and clustering ideas are proposed. Under the two test sets of public dataset and collected campus network data information of a university, the detection performance of the proposed anomaly detection method is compared with other anomaly detection algorithm models. The results show that the proposed detection model is superior to other models in speed and accuracy under the open dataset. And the two traffic anomaly detection models proposed in the study can well complete the task of network traffic anomaly detection under the large-scale campus network environment.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.