Si Hong, Xiaojun Shen, Tong-Qi Yuan, Haipeng Yu, Feng Wang
{"title":"用创新的DES技术释放木质素的潜力","authors":"Si Hong, Xiaojun Shen, Tong-Qi Yuan, Haipeng Yu, Feng Wang","doi":"10.1016/j.trechm.2023.08.006","DOIUrl":null,"url":null,"abstract":"Lignin, the only large-volume sustainable source of aromatic biopolymer in nature, is an attractive feedstock for the production of functional materials. However, considering its high reactivity, lignin is difficult to extract without avoiding uncontrolled degradation and condensation, which significantly impedes the upgrading of the extracted lignin into high-valued materials. Deep eutectic solvents (DES), as an emerging solvent choice, have driven innumerable advances in sustainable biorefinery, especially in lignin fractionation and valorization. Due to their property tunability and high lignin solubility, lignin modification with DES is an appealing approach to boost the extracted lignin’s reactivity and compatibility with polymers. This review systematically summarizes the latest progress of DES in lignin modification and further upgrading into functional materials.","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"45 1","pages":"0"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking lignin’s potential with innovative DES technology\",\"authors\":\"Si Hong, Xiaojun Shen, Tong-Qi Yuan, Haipeng Yu, Feng Wang\",\"doi\":\"10.1016/j.trechm.2023.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lignin, the only large-volume sustainable source of aromatic biopolymer in nature, is an attractive feedstock for the production of functional materials. However, considering its high reactivity, lignin is difficult to extract without avoiding uncontrolled degradation and condensation, which significantly impedes the upgrading of the extracted lignin into high-valued materials. Deep eutectic solvents (DES), as an emerging solvent choice, have driven innumerable advances in sustainable biorefinery, especially in lignin fractionation and valorization. Due to their property tunability and high lignin solubility, lignin modification with DES is an appealing approach to boost the extracted lignin’s reactivity and compatibility with polymers. This review systematically summarizes the latest progress of DES in lignin modification and further upgrading into functional materials.\",\"PeriodicalId\":48544,\"journal\":{\"name\":\"Trends in Chemistry\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.trechm.2023.08.006\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.trechm.2023.08.006","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unlocking lignin’s potential with innovative DES technology
Lignin, the only large-volume sustainable source of aromatic biopolymer in nature, is an attractive feedstock for the production of functional materials. However, considering its high reactivity, lignin is difficult to extract without avoiding uncontrolled degradation and condensation, which significantly impedes the upgrading of the extracted lignin into high-valued materials. Deep eutectic solvents (DES), as an emerging solvent choice, have driven innumerable advances in sustainable biorefinery, especially in lignin fractionation and valorization. Due to their property tunability and high lignin solubility, lignin modification with DES is an appealing approach to boost the extracted lignin’s reactivity and compatibility with polymers. This review systematically summarizes the latest progress of DES in lignin modification and further upgrading into functional materials.
期刊介绍:
Trends in Chemistry serves as a new global platform for discussing significant and transformative concepts across all areas of chemistry. It recognizes that breakthroughs in chemistry hold the key to addressing major global challenges. The journal offers readable, multidisciplinary articles, including reviews, opinions, and short pieces, designed to keep both students and leading scientists updated on pressing issues in the field.
Covering analytical, inorganic, organic, physical, and theoretical chemistry, the journal highlights major themes such as biochemistry, catalysis, environmental chemistry, materials, medicine, polymers, and supramolecular chemistry. It also welcomes articles on chemical education, health and safety, policy and public relations, and ethics and law.