Anna Milillo, Menelaos Sarantos, Cesare Grava, Diego Janches, Helmut Lammer, Francois Leblanc, Norbert Schorghofer, Peter Wurz, Benjamin D. Teolis, Go Murakami
{"title":"内太阳系表面外逸层研究的未来方向","authors":"Anna Milillo, Menelaos Sarantos, Cesare Grava, Diego Janches, Helmut Lammer, Francois Leblanc, Norbert Schorghofer, Peter Wurz, Benjamin D. Teolis, Go Murakami","doi":"10.1007/s11214-023-00994-8","DOIUrl":null,"url":null,"abstract":"Abstract Surface-bounded exospheres result from complex interactions between the planetary environment and the rocky body’s surface. Different drivers including photons, ion, electrons, and the meteoroid populations impacting the surfaces of different bodies must be considered when investigating the generation of such an exosphere. Exospheric observations of different kinds of species, i.e., volatiles or refractories, alkali metals, or water group species, provide clues to the processes at work, to the drivers, to the surface properties, and to the release efficiencies. This information allows the investigation on how the bodies evolved and will evolve; moreover, it allows us to infer which processes are dominating in different environments. In this review we focus on unanswered questions and measurements needed to gain insights into surface release processes, drivers, and exosphere characterizations. Future opportunities offered by upcoming space missions, ground-based observations, and new directions for modelling are also discussed.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"7 1","pages":"0"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Future Directions for the Investigation of Surface-Bounded Exospheres in the Inner Solar System\",\"authors\":\"Anna Milillo, Menelaos Sarantos, Cesare Grava, Diego Janches, Helmut Lammer, Francois Leblanc, Norbert Schorghofer, Peter Wurz, Benjamin D. Teolis, Go Murakami\",\"doi\":\"10.1007/s11214-023-00994-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surface-bounded exospheres result from complex interactions between the planetary environment and the rocky body’s surface. Different drivers including photons, ion, electrons, and the meteoroid populations impacting the surfaces of different bodies must be considered when investigating the generation of such an exosphere. Exospheric observations of different kinds of species, i.e., volatiles or refractories, alkali metals, or water group species, provide clues to the processes at work, to the drivers, to the surface properties, and to the release efficiencies. This information allows the investigation on how the bodies evolved and will evolve; moreover, it allows us to infer which processes are dominating in different environments. In this review we focus on unanswered questions and measurements needed to gain insights into surface release processes, drivers, and exosphere characterizations. Future opportunities offered by upcoming space missions, ground-based observations, and new directions for modelling are also discussed.\",\"PeriodicalId\":21902,\"journal\":{\"name\":\"Space Science Reviews\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Science Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-00994-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-00994-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Future Directions for the Investigation of Surface-Bounded Exospheres in the Inner Solar System
Abstract Surface-bounded exospheres result from complex interactions between the planetary environment and the rocky body’s surface. Different drivers including photons, ion, electrons, and the meteoroid populations impacting the surfaces of different bodies must be considered when investigating the generation of such an exosphere. Exospheric observations of different kinds of species, i.e., volatiles or refractories, alkali metals, or water group species, provide clues to the processes at work, to the drivers, to the surface properties, and to the release efficiencies. This information allows the investigation on how the bodies evolved and will evolve; moreover, it allows us to infer which processes are dominating in different environments. In this review we focus on unanswered questions and measurements needed to gain insights into surface release processes, drivers, and exosphere characterizations. Future opportunities offered by upcoming space missions, ground-based observations, and new directions for modelling are also discussed.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.