沿流库埃-泊泽维尔和沿展向泊泽维尔基流的谱和能量-李雅普诺夫稳定性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrea Giacobbe, Carla Perrone
{"title":"沿流库埃-泊泽维尔和沿展向泊泽维尔基流的谱和能量-李雅普诺夫稳定性","authors":"Andrea Giacobbe, Carla Perrone","doi":"10.1007/s11587-023-00815-8","DOIUrl":null,"url":null,"abstract":"Abstract When a fluid fills an infinite layer between two rigid plates in relative motion, and it is simultaneously subject to a gradient of pressure not parallel to the motion, the base flow is a combination of Couette–Poiseuille in the direction along the boundaries’ relative motion, but it also possess a Poiseuille component in the transverse direction. For this reason the linearised equations include all variables x , y , z , and not only explicitly two variables x , z as it typically happens in the literature. For convenience, we indicate as streamwise the direction of the relative motions of the plates, and spanwise the orthogonal direction. We use Chebyshev collocation method to investigate the monotonic behaviour of the energy along perturbations of general streamwise Couette–Poiseuille plus spanwise Poiseuille base flow, thus obtaining energy-critical Reynolds numbers depending on two parameters. We finally compute the spectrum of the linearisation at such base flows, and hence determine spectrum-critical Reynolds numbers depending on the two parameters. The choice of convex combinations of Couette and Poiseuille flows along the streamwise direction, and spanwise Poiseuille flow, affects the value of the energy-critical Reynolds and wave numbers in interesting ways. Also the spectrum-critical Reynolds and wave numbers depend on the type of base flow in peculiar ways. These dependencies are not described in the literature.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral and Energy–Lyapunov stability of streamwise Couette–Poiseuille and spanwise Poiseuille base flows\",\"authors\":\"Andrea Giacobbe, Carla Perrone\",\"doi\":\"10.1007/s11587-023-00815-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When a fluid fills an infinite layer between two rigid plates in relative motion, and it is simultaneously subject to a gradient of pressure not parallel to the motion, the base flow is a combination of Couette–Poiseuille in the direction along the boundaries’ relative motion, but it also possess a Poiseuille component in the transverse direction. For this reason the linearised equations include all variables x , y , z , and not only explicitly two variables x , z as it typically happens in the literature. For convenience, we indicate as streamwise the direction of the relative motions of the plates, and spanwise the orthogonal direction. We use Chebyshev collocation method to investigate the monotonic behaviour of the energy along perturbations of general streamwise Couette–Poiseuille plus spanwise Poiseuille base flow, thus obtaining energy-critical Reynolds numbers depending on two parameters. We finally compute the spectrum of the linearisation at such base flows, and hence determine spectrum-critical Reynolds numbers depending on the two parameters. The choice of convex combinations of Couette and Poiseuille flows along the streamwise direction, and spanwise Poiseuille flow, affects the value of the energy-critical Reynolds and wave numbers in interesting ways. Also the spectrum-critical Reynolds and wave numbers depend on the type of base flow in peculiar ways. These dependencies are not described in the literature.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00815-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00815-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当流体在相对运动的两个刚性板之间的无限层内填充时,同时受到不平行于运动的压力梯度,基流在边界相对运动方向上是库埃-泊泽维尔分量的组合,但在横向上也具有泊泽维尔分量。由于这个原因,线性化方程包括所有变量x, y, z,而不仅仅是像文献中通常发生的那样明确地包含两个变量x, z。为方便起见,我们将两板块相对运动的方向表示为流方向,而将正交方向表示为展向。利用切比雪夫配点法研究了一般沿流库埃-泊泽维尔和沿展向泊泽维尔基流沿扰动的能量单调行为,从而得到了依赖于两个参数的能量临界雷诺数。我们最后计算了这种基流的线性化谱,从而根据这两个参数确定了谱临界雷诺数。库埃特流和泊泽维尔流沿流方向和展向泊泽维尔流的凸组合的选择以有趣的方式影响能量临界雷诺数和波数的值。此外,谱临界雷诺数和波数以特殊的方式依赖于基流的类型。这些依赖关系在文献中没有描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spectral and Energy–Lyapunov stability of streamwise Couette–Poiseuille and spanwise Poiseuille base flows

Spectral and Energy–Lyapunov stability of streamwise Couette–Poiseuille and spanwise Poiseuille base flows
Abstract When a fluid fills an infinite layer between two rigid plates in relative motion, and it is simultaneously subject to a gradient of pressure not parallel to the motion, the base flow is a combination of Couette–Poiseuille in the direction along the boundaries’ relative motion, but it also possess a Poiseuille component in the transverse direction. For this reason the linearised equations include all variables x , y , z , and not only explicitly two variables x , z as it typically happens in the literature. For convenience, we indicate as streamwise the direction of the relative motions of the plates, and spanwise the orthogonal direction. We use Chebyshev collocation method to investigate the monotonic behaviour of the energy along perturbations of general streamwise Couette–Poiseuille plus spanwise Poiseuille base flow, thus obtaining energy-critical Reynolds numbers depending on two parameters. We finally compute the spectrum of the linearisation at such base flows, and hence determine spectrum-critical Reynolds numbers depending on the two parameters. The choice of convex combinations of Couette and Poiseuille flows along the streamwise direction, and spanwise Poiseuille flow, affects the value of the energy-critical Reynolds and wave numbers in interesting ways. Also the spectrum-critical Reynolds and wave numbers depend on the type of base flow in peculiar ways. These dependencies are not described in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信