在$3$均匀超图上,避免了一个长度为4的循环

IF 0.7 4区 数学 Q2 MATHEMATICS
Beka Ergemlidze, Ervin Győri, Abhishek Methuku, Nika Salia, Casey Tompkins
{"title":"在$3$均匀超图上,避免了一个长度为4的循环","authors":"Beka Ergemlidze, Ervin Győri, Abhishek Methuku, Nika Salia, Casey Tompkins","doi":"10.37236/11443","DOIUrl":null,"url":null,"abstract":"We show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))\\frac{n^{3/2}}{\\sqrt{10}}$. This improves earlier estimates by Győri and Lemons and by Füredi and Özkahya.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"48 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On $3$-uniform hypergraphs avoiding a cycle of length four\",\"authors\":\"Beka Ergemlidze, Ervin Győri, Abhishek Methuku, Nika Salia, Casey Tompkins\",\"doi\":\"10.37236/11443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))\\\\frac{n^{3/2}}{\\\\sqrt{10}}$. This improves earlier estimates by Győri and Lemons and by Füredi and Özkahya.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11443\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了不存在长度为4的Berge循环的$3$ -一致超图的最大边数不超过$(1+o(1))\frac{n^{3/2}}{\sqrt{10}}$。这改进了Győri和Lemons以及f redi和Özkahya先前的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $3$-uniform hypergraphs avoiding a cycle of length four
We show that the maximum number of edges in a $3$-uniform hypergraph without a Berge cycle of length four is at most $(1+o(1))\frac{n^{3/2}}{\sqrt{10}}$. This improves earlier estimates by Győri and Lemons and by Füredi and Özkahya.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信