{"title":"基于YOLO和lsh的视频流分析景观,用于道路网络的短期交通密度监控","authors":"LAVANYA K, STUTI TIWARI, RAHUL ANAND, JUDE HEMANTH","doi":"10.55730/1300-0632.4036","DOIUrl":null,"url":null,"abstract":"The duty of monitoring traffic during rush hour is difficult due to the fact that modern roadways are getting more crowded every day. The automated solutions that have already been created in this area are ineffective at processing enormous amounts of data in a short amount of time, leading to ineffectiveness and inconsistent results. The YOLO (you only look once) and LSH (locality sensitive hashing) algorithms are combined with the Kafka architecture in this study to create a method for assessing traffic density in real-time scenarios. Our concept, which is specifically designed for vehicular networks, predicts the traffic density in a given location by gathering live stream data from traffic surveillance cameras and transforming it into frames (at a rate of 11 per minute) using the YOLOv3 algorithm, which is a crucial parameter for performing effective traffic diversion by suggesting alternate routes and avoiding traffic congestion. The predicted density is then projected onto Google Maps for the convenience of local clients. The comparative study?s results demonstrate that our strategy consistently and accurately predicts vehicular density, with an accuracy of more than 90 percent under all conditions. It also shows a significant improvement in both precision and recall, with a 4.08 percent improvement.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"33 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLO and LSH-based video stream analytics landscape for short-term traffic density surveillance at road networks\",\"authors\":\"LAVANYA K, STUTI TIWARI, RAHUL ANAND, JUDE HEMANTH\",\"doi\":\"10.55730/1300-0632.4036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The duty of monitoring traffic during rush hour is difficult due to the fact that modern roadways are getting more crowded every day. The automated solutions that have already been created in this area are ineffective at processing enormous amounts of data in a short amount of time, leading to ineffectiveness and inconsistent results. The YOLO (you only look once) and LSH (locality sensitive hashing) algorithms are combined with the Kafka architecture in this study to create a method for assessing traffic density in real-time scenarios. Our concept, which is specifically designed for vehicular networks, predicts the traffic density in a given location by gathering live stream data from traffic surveillance cameras and transforming it into frames (at a rate of 11 per minute) using the YOLOv3 algorithm, which is a crucial parameter for performing effective traffic diversion by suggesting alternate routes and avoiding traffic congestion. The predicted density is then projected onto Google Maps for the convenience of local clients. The comparative study?s results demonstrate that our strategy consistently and accurately predicts vehicular density, with an accuracy of more than 90 percent under all conditions. It also shows a significant improvement in both precision and recall, with a 4.08 percent improvement.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0632.4036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0632.4036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
YOLO and LSH-based video stream analytics landscape for short-term traffic density surveillance at road networks
The duty of monitoring traffic during rush hour is difficult due to the fact that modern roadways are getting more crowded every day. The automated solutions that have already been created in this area are ineffective at processing enormous amounts of data in a short amount of time, leading to ineffectiveness and inconsistent results. The YOLO (you only look once) and LSH (locality sensitive hashing) algorithms are combined with the Kafka architecture in this study to create a method for assessing traffic density in real-time scenarios. Our concept, which is specifically designed for vehicular networks, predicts the traffic density in a given location by gathering live stream data from traffic surveillance cameras and transforming it into frames (at a rate of 11 per minute) using the YOLOv3 algorithm, which is a crucial parameter for performing effective traffic diversion by suggesting alternate routes and avoiding traffic congestion. The predicted density is then projected onto Google Maps for the convenience of local clients. The comparative study?s results demonstrate that our strategy consistently and accurately predicts vehicular density, with an accuracy of more than 90 percent under all conditions. It also shows a significant improvement in both precision and recall, with a 4.08 percent improvement.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.