{"title":"具有最大诱导6环数的平面图","authors":"Michael Savery","doi":"10.37236/11944","DOIUrl":null,"url":null,"abstract":"For large $n$ we determine the maximum number of induced 6-cycles which can be contained in a planar graph on $n$ vertices, and we classify the graphs which achieve this maximum. In particular we show that the maximum is achieved by the graph obtained by blowing up three pairwise non-adjacent vertices in a 6-cycle to sets of as even size as possible, and that every extremal example closely resembles this graph. This extends previous work by the author which solves the problem for 4-cycles and 5-cycles. The 5-cycle problem was also solved independently by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora.
","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"54 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar Graphs with the Maximum Number of Induced 6-Cycles\",\"authors\":\"Michael Savery\",\"doi\":\"10.37236/11944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For large $n$ we determine the maximum number of induced 6-cycles which can be contained in a planar graph on $n$ vertices, and we classify the graphs which achieve this maximum. In particular we show that the maximum is achieved by the graph obtained by blowing up three pairwise non-adjacent vertices in a 6-cycle to sets of as even size as possible, and that every extremal example closely resembles this graph. This extends previous work by the author which solves the problem for 4-cycles and 5-cycles. The 5-cycle problem was also solved independently by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora.
\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11944\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11944","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Planar Graphs with the Maximum Number of Induced 6-Cycles
For large $n$ we determine the maximum number of induced 6-cycles which can be contained in a planar graph on $n$ vertices, and we classify the graphs which achieve this maximum. In particular we show that the maximum is achieved by the graph obtained by blowing up three pairwise non-adjacent vertices in a 6-cycle to sets of as even size as possible, and that every extremal example closely resembles this graph. This extends previous work by the author which solves the problem for 4-cycles and 5-cycles. The 5-cycle problem was also solved independently by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.