用提拉米苏模型估计拍间间隔:一种误差小的新方法

Asiful Arefeen, Ali Akbari, Seyed Iman Mirzadeh, Roozbeh Jafari, Behrooz A. Shirazi, Hassan Ghasemzadeh
{"title":"用提拉米苏模型估计拍间间隔:一种误差小的新方法","authors":"Asiful Arefeen, Ali Akbari, Seyed Iman Mirzadeh, Roozbeh Jafari, Behrooz A. Shirazi, Hassan Ghasemzadeh","doi":"10.1145/3616020","DOIUrl":null,"url":null,"abstract":"Inter-beat interval (IBI) measurement enables estimation of heart-tare variability (HRV) which, in turns, can provide early indication of potential cardiovascular diseases (CVDs). However, extracting IBIs from noisy signals is challenging since the morphology of the signal gets distorted in the presence of noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state of the art techniques.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-Beat Interval Estimation with Tiramisu Model: A Novel Approach with Reduced Error\",\"authors\":\"Asiful Arefeen, Ali Akbari, Seyed Iman Mirzadeh, Roozbeh Jafari, Behrooz A. Shirazi, Hassan Ghasemzadeh\",\"doi\":\"10.1145/3616020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-beat interval (IBI) measurement enables estimation of heart-tare variability (HRV) which, in turns, can provide early indication of potential cardiovascular diseases (CVDs). However, extracting IBIs from noisy signals is challenging since the morphology of the signal gets distorted in the presence of noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state of the art techniques.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3616020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3616020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心跳间隔(IBI)测量可以估计心脏变异性(HRV),进而可以提供潜在心血管疾病(cvd)的早期指示。然而,从噪声信号中提取ibi是具有挑战性的,因为信号的形态在噪声的存在下会被扭曲。人体剧烈运动时的心电图受到噪声的严重干扰,被称为运动伪影,从中提取的IBI是不准确的。作为远程健康监测和可穿戴系统开发的一部分,心电信号去噪和正确估计ibi已成为信号处理研究的新兴课题。除传统方法外,深度学习技术最近已成功用于信号去噪,并且诊断过程变得更加容易,从而达到以前无法实现的精度水平。我们提出了一种利用提拉米苏自编码器模型的深度学习方法来抑制运动伪影噪声,并使心电信号的r峰即使在高强度运动存在时也能突出。去噪后,ibi的估计更准确,加快了诊断任务。结果表明,我们的方法能够从噪声心电信号中估计IBI,信噪比高达-30dB,估计IBI的平均均方根误差(RMSE)为13毫秒。在这种噪声水平下,我们的错误率保持在8%以下,优于其他最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-Beat Interval Estimation with Tiramisu Model: A Novel Approach with Reduced Error
Inter-beat interval (IBI) measurement enables estimation of heart-tare variability (HRV) which, in turns, can provide early indication of potential cardiovascular diseases (CVDs). However, extracting IBIs from noisy signals is challenging since the morphology of the signal gets distorted in the presence of noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state of the art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信