Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, Sahil Shah
求助PDF
{"title":"圆盘对矩形的最坏情况最优覆盖","authors":"Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, Sahil Shah","doi":"10.1007/s00454-023-00582-1","DOIUrl":null,"url":null,"abstract":"Abstract We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $$\\lambda \\ge 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , the critical covering area $$A^*(\\lambda )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is the minimum value for which any set of disks with total area at least $$A^*(\\lambda )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> can cover a rectangle of dimensions $$\\lambda \\times 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>×</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that there is a threshold value $$\\lambda _2 = \\sqrt{\\sqrt{7}/2 - 1/4} \\approx 1.035797\\ldots $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:msqrt> <mml:mrow> <mml:msqrt> <mml:mn>7</mml:mn> </mml:msqrt> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>≈</mml:mo> <mml:mn>1.035797</mml:mn> <mml:mo>…</mml:mo> </mml:mrow> </mml:math> , such that for $$\\lambda <\\lambda _2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo><</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:math> the critical covering area $$A^*(\\lambda )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is $$A^*(\\lambda )=3\\pi \\left( \\frac{\\lambda ^2}{16} +\\frac{5}{32} + \\frac{9}{256\\lambda ^2}\\right) $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> <mml:mi>π</mml:mi> <mml:mfenced> <mml:mfrac> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mn>16</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>32</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mrow> <mml:mn>256</mml:mn> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> </mml:mfenced> </mml:mrow> </mml:math> , and for $$\\lambda \\ge \\lambda _2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>≥</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:math> , the critical area is $$A^*(\\lambda )=\\pi (\\lambda ^2+2)/4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>π</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> ; these values are tight. For the special case $$\\lambda =1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , i.e., for covering a unit square, the critical covering area is $$\\frac{195\\pi }{256}\\approx 2.39301\\ldots $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>195</mml:mn> <mml:mi>π</mml:mi> </mml:mrow> <mml:mn>256</mml:mn> </mml:mfrac> <mml:mo>≈</mml:mo> <mml:mn>2.39301</mml:mn> <mml:mo>…</mml:mo> </mml:mrow> </mml:math> . The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Worst-Case Optimal Covering of Rectangles by Disks\",\"authors\":\"Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, Sahil Shah\",\"doi\":\"10.1007/s00454-023-00582-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $$\\\\lambda \\\\ge 1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , the critical covering area $$A^*(\\\\lambda )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is the minimum value for which any set of disks with total area at least $$A^*(\\\\lambda )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> can cover a rectangle of dimensions $$\\\\lambda \\\\times 1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>×</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that there is a threshold value $$\\\\lambda _2 = \\\\sqrt{\\\\sqrt{7}/2 - 1/4} \\\\approx 1.035797\\\\ldots $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:msqrt> <mml:mrow> <mml:msqrt> <mml:mn>7</mml:mn> </mml:msqrt> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>≈</mml:mo> <mml:mn>1.035797</mml:mn> <mml:mo>…</mml:mo> </mml:mrow> </mml:math> , such that for $$\\\\lambda <\\\\lambda _2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo><</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:math> the critical covering area $$A^*(\\\\lambda )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is $$A^*(\\\\lambda )=3\\\\pi \\\\left( \\\\frac{\\\\lambda ^2}{16} +\\\\frac{5}{32} + \\\\frac{9}{256\\\\lambda ^2}\\\\right) $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> <mml:mi>π</mml:mi> <mml:mfenced> <mml:mfrac> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mn>16</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>32</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mrow> <mml:mn>256</mml:mn> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> </mml:mfenced> </mml:mrow> </mml:math> , and for $$\\\\lambda \\\\ge \\\\lambda _2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>≥</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:math> , the critical area is $$A^*(\\\\lambda )=\\\\pi (\\\\lambda ^2+2)/4$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>π</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> ; these values are tight. For the special case $$\\\\lambda =1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , i.e., for covering a unit square, the critical covering area is $$\\\\frac{195\\\\pi }{256}\\\\approx 2.39301\\\\ldots $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>195</mml:mn> <mml:mi>π</mml:mi> </mml:mrow> <mml:mn>256</mml:mn> </mml:mfrac> <mml:mo>≈</mml:mo> <mml:mn>2.39301</mml:mn> <mml:mo>…</mml:mo> </mml:mrow> </mml:math> . The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00582-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00582-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Worst-Case Optimal Covering of Rectangles by Disks
Abstract We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $$\lambda \ge 1$$ λ ≥ 1 , the critical covering area $$A^*(\lambda )$$ A ∗ ( λ ) is the minimum value for which any set of disks with total area at least $$A^*(\lambda )$$ A ∗ ( λ ) can cover a rectangle of dimensions $$\lambda \times 1$$ λ × 1 . We show that there is a threshold value $$\lambda _2 = \sqrt{\sqrt{7}/2 - 1/4} \approx 1.035797\ldots $$ λ 2 = 7 / 2 - 1 / 4 ≈ 1.035797 … , such that for $$\lambda <\lambda _2$$ λ < λ 2 the critical covering area $$A^*(\lambda )$$ A ∗ ( λ ) is $$A^*(\lambda )=3\pi \left( \frac{\lambda ^2}{16} +\frac{5}{32} + \frac{9}{256\lambda ^2}\right) $$ A ∗ ( λ ) = 3 π λ 2 16 + 5 32 + 9 256 λ 2 , and for $$\lambda \ge \lambda _2$$ λ ≥ λ 2 , the critical area is $$A^*(\lambda )=\pi (\lambda ^2+2)/4$$ A ∗ ( λ ) = π ( λ 2 + 2 ) / 4 ; these values are tight. For the special case $$\lambda =1$$ λ = 1 , i.e., for covering a unit square, the critical covering area is $$\frac{195\pi }{256}\approx 2.39301\ldots $$ 195 π 256 ≈ 2.39301 … . The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.