在碳纳米管存在的情况下,挤压流通过里加板

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED
I. Zari, F. Ali, T. Gul, C. E. Madubueze, I. Ali
{"title":"在碳纳米管存在的情况下,挤压流通过里加板","authors":"I. Zari, F. Ali, T. Gul, C. E. Madubueze, I. Ali","doi":"10.1142/s0217979224503703","DOIUrl":null,"url":null,"abstract":"Squeezing or squeeze flows have tremendous applications in applied fields, like engineering, biomedical sciences and rheological studies. This paper demonstrates the squeezing flow of kerosene-based nanoliquids between parallelly aligned plates, with a Riga-type fixed lower boundary. The effects of dispersing two types of copper-functionalized carbon nanotubes (CNTs), single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are examined. Using appropriate transformations, a self-similar ordinary differential system is derived from the governing model of partial differential equations and substantial boundary conditions. Using the homotopy analysis method (HAM) and the [Formula: see text] package, analytical and numerical estimates are obtained, respectively. For higher values of the squeezing parameter, dimensionless temperature increases, while velocity patterns are upside-down. Moreover, increments in dimensionless parameters representing Riga constituent width, modified Hartmann number, nanoparticle concentration and radiation parameter improve heat transfer rates and thermal boundary layer thickness, however, adversely affect velocity. Despite enhanced friction effects, numerical results show that the Nusselt number increases as nanoparticle loads and radiation parameters increase. This suggests that convection rates are improved over conduction rates. Excellent agreement is found between analytical and numerical evaluations. Apparently, it is noticed that MWCNTs perform better than SWCNTs.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"298 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Squeezing flow in the existence of carbon nanotubes past a Riga plate\",\"authors\":\"I. Zari, F. Ali, T. Gul, C. E. Madubueze, I. Ali\",\"doi\":\"10.1142/s0217979224503703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Squeezing or squeeze flows have tremendous applications in applied fields, like engineering, biomedical sciences and rheological studies. This paper demonstrates the squeezing flow of kerosene-based nanoliquids between parallelly aligned plates, with a Riga-type fixed lower boundary. The effects of dispersing two types of copper-functionalized carbon nanotubes (CNTs), single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are examined. Using appropriate transformations, a self-similar ordinary differential system is derived from the governing model of partial differential equations and substantial boundary conditions. Using the homotopy analysis method (HAM) and the [Formula: see text] package, analytical and numerical estimates are obtained, respectively. For higher values of the squeezing parameter, dimensionless temperature increases, while velocity patterns are upside-down. Moreover, increments in dimensionless parameters representing Riga constituent width, modified Hartmann number, nanoparticle concentration and radiation parameter improve heat transfer rates and thermal boundary layer thickness, however, adversely affect velocity. Despite enhanced friction effects, numerical results show that the Nusselt number increases as nanoparticle loads and radiation parameters increase. This suggests that convection rates are improved over conduction rates. Excellent agreement is found between analytical and numerical evaluations. Apparently, it is noticed that MWCNTs perform better than SWCNTs.\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224503703\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979224503703","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

挤压或挤压流在工程、生物医学和流变学研究等应用领域有着巨大的应用。本文研究了具有riga型固定下边界的煤油基纳米液体在平行排列的平板间的挤压流动。研究了两种类型的铜功能化碳纳米管(CNTs),单壁CNTs (SWCNTs)和多壁CNTs (MWCNTs)的分散效果。利用适当的变换,从偏微分方程的控制模型和实体边界条件导出了一个自相似常微分系统。利用同伦分析方法(HAM)和[公式:见文]包,分别得到了解析估计和数值估计。挤压参数越高,无因次温度升高,而速度模式颠倒。此外,表示里加成分宽度、修正哈特曼数、纳米颗粒浓度和辐射参数的无量纲参数的增量提高了传热速率和热边界层厚度,但对速度产生了不利影响。尽管摩擦效应增强,但数值结果表明,努塞尔数随着纳米颗粒载荷和辐射参数的增加而增加。这表明对流速率优于传导速率。分析结果与数值计算结果非常吻合。显然,我们注意到MWCNTs的性能优于SWCNTs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Squeezing flow in the existence of carbon nanotubes past a Riga plate
Squeezing or squeeze flows have tremendous applications in applied fields, like engineering, biomedical sciences and rheological studies. This paper demonstrates the squeezing flow of kerosene-based nanoliquids between parallelly aligned plates, with a Riga-type fixed lower boundary. The effects of dispersing two types of copper-functionalized carbon nanotubes (CNTs), single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are examined. Using appropriate transformations, a self-similar ordinary differential system is derived from the governing model of partial differential equations and substantial boundary conditions. Using the homotopy analysis method (HAM) and the [Formula: see text] package, analytical and numerical estimates are obtained, respectively. For higher values of the squeezing parameter, dimensionless temperature increases, while velocity patterns are upside-down. Moreover, increments in dimensionless parameters representing Riga constituent width, modified Hartmann number, nanoparticle concentration and radiation parameter improve heat transfer rates and thermal boundary layer thickness, however, adversely affect velocity. Despite enhanced friction effects, numerical results show that the Nusselt number increases as nanoparticle loads and radiation parameters increase. This suggests that convection rates are improved over conduction rates. Excellent agreement is found between analytical and numerical evaluations. Apparently, it is noticed that MWCNTs perform better than SWCNTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信