Mohammed N. Ajour, Muhyaddin J. H. Rawa, Ahmad H. Milyani, Meicheng Li
{"title":"可变外力作用下复杂形状太阳能单元中纳米材料的传热与物理行为","authors":"Mohammed N. Ajour, Muhyaddin J. H. Rawa, Ahmad H. Milyani, Meicheng Li","doi":"10.1142/s0217979224503521","DOIUrl":null,"url":null,"abstract":"In order to improve convective flow, this study primarily used techniques including curved surfaces and a strong magnetic force. Cold temperatures and even flow are experienced by both the circular outer wall and the sinusoidal inner wall. FHD can have a bigger effect when combined with iron oxide in the base fluid. The electric current-carrying wire was positioned close to the interior wall in order to produce Kelvin force. A novel modeling approach was chosen to ascertain the number of scalars throughout the entire domain, and the process was validated using earlier numerical work. Gravity forces, ferrofluid concentrations, and the Kelvin force serve as the main pillars of current research. Conduction features increase and the Nu rises by 12.44% when nanopowders are used. Due to gravity and magnetic forces, the nanofluid can move more easily through the container. At [Formula: see text] and 1e4, respectively, Nu increases by 93.04% and 35.43%; with an increase in Mn F . Additionally, Nu rises with Ra at Mn[Formula: see text] and Mn[Formula: see text] by 43.55% and 0.71%, respectively.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"16 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer of nanomaterial and physical behavior in a complexly shaped solar unit with a variable external force\",\"authors\":\"Mohammed N. Ajour, Muhyaddin J. H. Rawa, Ahmad H. Milyani, Meicheng Li\",\"doi\":\"10.1142/s0217979224503521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve convective flow, this study primarily used techniques including curved surfaces and a strong magnetic force. Cold temperatures and even flow are experienced by both the circular outer wall and the sinusoidal inner wall. FHD can have a bigger effect when combined with iron oxide in the base fluid. The electric current-carrying wire was positioned close to the interior wall in order to produce Kelvin force. A novel modeling approach was chosen to ascertain the number of scalars throughout the entire domain, and the process was validated using earlier numerical work. Gravity forces, ferrofluid concentrations, and the Kelvin force serve as the main pillars of current research. Conduction features increase and the Nu rises by 12.44% when nanopowders are used. Due to gravity and magnetic forces, the nanofluid can move more easily through the container. At [Formula: see text] and 1e4, respectively, Nu increases by 93.04% and 35.43%; with an increase in Mn F . Additionally, Nu rises with Ra at Mn[Formula: see text] and Mn[Formula: see text] by 43.55% and 0.71%, respectively.\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224503521\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979224503521","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Heat transfer of nanomaterial and physical behavior in a complexly shaped solar unit with a variable external force
In order to improve convective flow, this study primarily used techniques including curved surfaces and a strong magnetic force. Cold temperatures and even flow are experienced by both the circular outer wall and the sinusoidal inner wall. FHD can have a bigger effect when combined with iron oxide in the base fluid. The electric current-carrying wire was positioned close to the interior wall in order to produce Kelvin force. A novel modeling approach was chosen to ascertain the number of scalars throughout the entire domain, and the process was validated using earlier numerical work. Gravity forces, ferrofluid concentrations, and the Kelvin force serve as the main pillars of current research. Conduction features increase and the Nu rises by 12.44% when nanopowders are used. Due to gravity and magnetic forces, the nanofluid can move more easily through the container. At [Formula: see text] and 1e4, respectively, Nu increases by 93.04% and 35.43%; with an increase in Mn F . Additionally, Nu rises with Ra at Mn[Formula: see text] and Mn[Formula: see text] by 43.55% and 0.71%, respectively.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.