{"title":"面向6G毫米波集成通信与传感的车辆位置与速度检测的渐近性能极限","authors":"Shanshan Ma, Bingpeng Zhou","doi":"10.23919/jcc.fa.2023-0047.202309","DOIUrl":null,"url":null,"abstract":"In this paper, joint location and velocity estimation (JLVE) of vehicular terminals for 6G integrated communication and sensing (ICAS) is studied. We aim to provide a unified performance analysis framework for ICAS-based JLVE, which is challenging due to random fading, multipath interference, and complexly coupled system models, and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood. To address this challenge, we exploit structured information models of the JLVE problem to render tractable performance quantification. Firstly, an individual closed-form Cramer-Rao lower bound for vehicular localization, velocity detection and channel estimation, respectively, is established for gaining insights into performance limits of ICAS-based JLVE. Secondly, the impact of system resource factors and fading environments, e.g., system bandwidth, the number of subcarriers, carrier frequency, antenna array size, transmission distance, spatial channel correlation, channel covariance, the number of interference paths and noise power, on the JLVE performance is theoretically analyzed. The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a performance benchmark for various JLVE methods.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"10 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic performance limits of vehicular location and velocity detection towards 6G mmWave integrated communication and sensing\",\"authors\":\"Shanshan Ma, Bingpeng Zhou\",\"doi\":\"10.23919/jcc.fa.2023-0047.202309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, joint location and velocity estimation (JLVE) of vehicular terminals for 6G integrated communication and sensing (ICAS) is studied. We aim to provide a unified performance analysis framework for ICAS-based JLVE, which is challenging due to random fading, multipath interference, and complexly coupled system models, and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood. To address this challenge, we exploit structured information models of the JLVE problem to render tractable performance quantification. Firstly, an individual closed-form Cramer-Rao lower bound for vehicular localization, velocity detection and channel estimation, respectively, is established for gaining insights into performance limits of ICAS-based JLVE. Secondly, the impact of system resource factors and fading environments, e.g., system bandwidth, the number of subcarriers, carrier frequency, antenna array size, transmission distance, spatial channel correlation, channel covariance, the number of interference paths and noise power, on the JLVE performance is theoretically analyzed. The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a performance benchmark for various JLVE methods.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/jcc.fa.2023-0047.202309\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.fa.2023-0047.202309","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Asymptotic performance limits of vehicular location and velocity detection towards 6G mmWave integrated communication and sensing
In this paper, joint location and velocity estimation (JLVE) of vehicular terminals for 6G integrated communication and sensing (ICAS) is studied. We aim to provide a unified performance analysis framework for ICAS-based JLVE, which is challenging due to random fading, multipath interference, and complexly coupled system models, and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood. To address this challenge, we exploit structured information models of the JLVE problem to render tractable performance quantification. Firstly, an individual closed-form Cramer-Rao lower bound for vehicular localization, velocity detection and channel estimation, respectively, is established for gaining insights into performance limits of ICAS-based JLVE. Secondly, the impact of system resource factors and fading environments, e.g., system bandwidth, the number of subcarriers, carrier frequency, antenna array size, transmission distance, spatial channel correlation, channel covariance, the number of interference paths and noise power, on the JLVE performance is theoretically analyzed. The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a performance benchmark for various JLVE methods.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.