外部影响对热带气旋强度变化影响的研究进展综述

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Joshua B. Wadler , Johna E. Rudzin , Benjamin Jaimes de la Cruz , Jie Chen , Michael Fischer , Guanghua Chen , Nannan Qin , Brian Tang , Qingqing Li
{"title":"外部影响对热带气旋强度变化影响的研究进展综述","authors":"Joshua B. Wadler ,&nbsp;Johna E. Rudzin ,&nbsp;Benjamin Jaimes de la Cruz ,&nbsp;Jie Chen ,&nbsp;Michael Fischer ,&nbsp;Guanghua Chen ,&nbsp;Nannan Qin ,&nbsp;Brian Tang ,&nbsp;Qingqing Li","doi":"10.1016/j.tcrr.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past four years, significant research has advanced our understanding of how external factors influence tropical cyclone (TC) intensity changes. Research on air-sea interactions shows that increasing the moisture disequilibrium is a very effective way to increase surface heat fluxes and that ocean salinity-stratification plays a non-negligible part in TC intensity change. Vertical wind shear from the environment induces vortex misalignment, which controls the onset of significant TC intensification. Blocking due to upper-level outflow from TCs can reduce the magnitude of vertical wind shear, making for TC intensification. Enhanced TC-trough interactions are vital for rapid intensification in some TC cases because of strengthened warm air advection, but upper-level troughs are found to limit TC intensification in other cases due to dry midlevel air intrusions and increased shear. Aerosol effects on TCs can be divided into direct effects involving aerosol-radiation interactions and indirect effects involving aerosol-cloud interactions. The radiation absorption by the aerosols can change the temperature profile and affect outer rainbands through changes in stability and microphysics. Sea spray and sea salt aerosols are more important in the inner region, where the aerosols increase precipitation and latent heating, promoting more intensification. For landfalling TCs, the intensity decay is initially more sensitive to surface roughness than soil moisture, and the subsequent decay is mainly due to the rapid reduction in surface moisture fluxes. These new insights further sharpen our understanding of the mechanisms by which external factors influence TC intensity changes.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"12 3","pages":"Pages 200-215"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603223000395/pdfft?md5=75c970bfed66038f97ab660225e84a79&pid=1-s2.0-S2225603223000395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of recent research progress on the effect of external influences on tropical cyclone intensity change\",\"authors\":\"Joshua B. Wadler ,&nbsp;Johna E. Rudzin ,&nbsp;Benjamin Jaimes de la Cruz ,&nbsp;Jie Chen ,&nbsp;Michael Fischer ,&nbsp;Guanghua Chen ,&nbsp;Nannan Qin ,&nbsp;Brian Tang ,&nbsp;Qingqing Li\",\"doi\":\"10.1016/j.tcrr.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past four years, significant research has advanced our understanding of how external factors influence tropical cyclone (TC) intensity changes. Research on air-sea interactions shows that increasing the moisture disequilibrium is a very effective way to increase surface heat fluxes and that ocean salinity-stratification plays a non-negligible part in TC intensity change. Vertical wind shear from the environment induces vortex misalignment, which controls the onset of significant TC intensification. Blocking due to upper-level outflow from TCs can reduce the magnitude of vertical wind shear, making for TC intensification. Enhanced TC-trough interactions are vital for rapid intensification in some TC cases because of strengthened warm air advection, but upper-level troughs are found to limit TC intensification in other cases due to dry midlevel air intrusions and increased shear. Aerosol effects on TCs can be divided into direct effects involving aerosol-radiation interactions and indirect effects involving aerosol-cloud interactions. The radiation absorption by the aerosols can change the temperature profile and affect outer rainbands through changes in stability and microphysics. Sea spray and sea salt aerosols are more important in the inner region, where the aerosols increase precipitation and latent heating, promoting more intensification. For landfalling TCs, the intensity decay is initially more sensitive to surface roughness than soil moisture, and the subsequent decay is mainly due to the rapid reduction in surface moisture fluxes. These new insights further sharpen our understanding of the mechanisms by which external factors influence TC intensity changes.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"12 3\",\"pages\":\"Pages 200-215\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2225603223000395/pdfft?md5=75c970bfed66038f97ab660225e84a79&pid=1-s2.0-S2225603223000395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603223000395\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603223000395","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在过去的四年中,重要的研究提高了我们对外部因素如何影响热带气旋(TC)强度变化的认识。海气相互作用的研究表明,增加水汽不平衡是增加地表热通量的有效途径,海洋盐度分层对TC强度变化起着不可忽视的作用。来自环境的垂直风切变导致涡旋错位,控制了显著TC增强的开始。TC上层流出物的阻塞可以降低垂直风切变的强度,使TC增强。在某些情况下,由于暖空气平流增强,TC-槽相互作用的增强对TC的快速增强至关重要,但在其他情况下,由于干燥的中层空气入侵和切变增加,上层槽限制了TC的增强。气溶胶对tc的影响可分为涉及气溶胶-辐射相互作用的直接影响和涉及气溶胶-云相互作用的间接影响。气溶胶的辐射吸收可以改变温度分布,并通过稳定性和微物理的变化影响外部雨带。海雾和海盐气溶胶在内陆地区更为重要,气溶胶增加了降水和潜热,促进了更强的强化。对于降落tc,强度衰减最初对地表粗糙度比土壤湿度更敏感,随后的衰减主要是由于地表水分通量的快速减少。这些新的见解进一步加深了我们对外部因素影响TC强度变化的机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of recent research progress on the effect of external influences on tropical cyclone intensity change

Over the past four years, significant research has advanced our understanding of how external factors influence tropical cyclone (TC) intensity changes. Research on air-sea interactions shows that increasing the moisture disequilibrium is a very effective way to increase surface heat fluxes and that ocean salinity-stratification plays a non-negligible part in TC intensity change. Vertical wind shear from the environment induces vortex misalignment, which controls the onset of significant TC intensification. Blocking due to upper-level outflow from TCs can reduce the magnitude of vertical wind shear, making for TC intensification. Enhanced TC-trough interactions are vital for rapid intensification in some TC cases because of strengthened warm air advection, but upper-level troughs are found to limit TC intensification in other cases due to dry midlevel air intrusions and increased shear. Aerosol effects on TCs can be divided into direct effects involving aerosol-radiation interactions and indirect effects involving aerosol-cloud interactions. The radiation absorption by the aerosols can change the temperature profile and affect outer rainbands through changes in stability and microphysics. Sea spray and sea salt aerosols are more important in the inner region, where the aerosols increase precipitation and latent heating, promoting more intensification. For landfalling TCs, the intensity decay is initially more sensitive to surface roughness than soil moisture, and the subsequent decay is mainly due to the rapid reduction in surface moisture fluxes. These new insights further sharpen our understanding of the mechanisms by which external factors influence TC intensity changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信