人工减少股直肌引发的膝关节伸肌力量如何改变脑瘫儿童的步态生物力学?

Kubra Onerge, Rukiye Sert, Nazif Ekin Akalan, Shavkat Nadir, Fuat Bilgili
{"title":"人工减少股直肌引发的膝关节伸肌力量如何改变脑瘫儿童的步态生物力学?","authors":"Kubra Onerge, Rukiye Sert, Nazif Ekin Akalan, Shavkat Nadir, Fuat Bilgili","doi":"10.1016/j.gaitpost.2023.07.181","DOIUrl":null,"url":null,"abstract":"Stiff knee gait (SKG) is a common gait abnormality in children with spastic cerebral palsy (SCP) (1). The rectus femoris (RF) muscle is the most targeted treatment of SKG with surgical and neurological interventions (2,3). There is no study in the literature, as we are aware of, investigating the temporary effects of RF muscle weakness on gait in children with SPC. How does artificially reduced rectus femoris primered knee extensor muscle force alters the gait biomechanics of children with SCP? 4 children with SCP (GMFCS Level I-II; 3 females; 2 bilateral, 2 unilateral CP; age:12.75 ± 4.65 y.o., weight: 37.50 ± 12.44 kg, height: 143.88 ± 16.15 cm) were included in the study. To reduce the RF maximal isometric voluntary muscle contraction force (MIVMCF) temporarily, a stretching protocol (135 sec×13 repetitions with 5 sec. resting) was performed (4,5,6). Stretching severity is set as 7/10 discomfort level according to the visual analog scale. 3D gait analysis system (VICON, 6xVantage 5 + 2xAMTI force plates) was utilized before (BS) and after (AS) stretching. MIVMCF of knee-extensor muscles were measured in BS and AS conditions with a hand-held dynamometer (Lafayette 01165 A, US) 3 times at 30-second resting intervals in a sitting position. Interested kinematic and kinetic gait alterations were statistically compared with the paired statistical parametric mapping (SPM{t}) using MATLAB (p<0.05). The MIVMCF of knee-extensor muscles decreased by 15.59% (from 133.91 ± 59.89 N to 113.04 ± 46.35 N) in the AS period. No significant difference was observed between walking speeds (p=0.353). According to the SPM{t} analysis of the sagittal plane parameters of the knee between AS and BS, a significant difference was observed in the initial contact, loading response, and swing sub-phases. All interested gait parameters were compared in Table-1. Download : Download high-res image (255KB)Download : Download full-size image The stretching methodology was effective enough to temporarily reduce the MIVMCF of the knee extensors in children with SPC. As the first in the literature, the gait alterations of rectus femoris primered knee extensor muscle weakness in three planes were determined for children with SCP. As expected, the peak knee flexion and range improved in AS, although the peak knee flexion delay-related parameters did not significantly change. Although 2 of the 4 stiff knee parameters were improved, anterior pelvic tilt was not significantly reduced which may be related to stretching methodology partially involving other knee extensors such as three vastii. Therefore, this study demonstrated that, although the stretching methodology may be improved by surface EMG, it is capable to generate MIVMCF reduction to predict treatment on the knee extensors such as the application of neural agents or orthopedic surgery for SCPs.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How does artificially reduced rectus femoris primered knee extensor muscle force alters the gait biomechanics in children with cerebral palsy?\",\"authors\":\"Kubra Onerge, Rukiye Sert, Nazif Ekin Akalan, Shavkat Nadir, Fuat Bilgili\",\"doi\":\"10.1016/j.gaitpost.2023.07.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stiff knee gait (SKG) is a common gait abnormality in children with spastic cerebral palsy (SCP) (1). The rectus femoris (RF) muscle is the most targeted treatment of SKG with surgical and neurological interventions (2,3). There is no study in the literature, as we are aware of, investigating the temporary effects of RF muscle weakness on gait in children with SPC. How does artificially reduced rectus femoris primered knee extensor muscle force alters the gait biomechanics of children with SCP? 4 children with SCP (GMFCS Level I-II; 3 females; 2 bilateral, 2 unilateral CP; age:12.75 ± 4.65 y.o., weight: 37.50 ± 12.44 kg, height: 143.88 ± 16.15 cm) were included in the study. To reduce the RF maximal isometric voluntary muscle contraction force (MIVMCF) temporarily, a stretching protocol (135 sec×13 repetitions with 5 sec. resting) was performed (4,5,6). Stretching severity is set as 7/10 discomfort level according to the visual analog scale. 3D gait analysis system (VICON, 6xVantage 5 + 2xAMTI force plates) was utilized before (BS) and after (AS) stretching. MIVMCF of knee-extensor muscles were measured in BS and AS conditions with a hand-held dynamometer (Lafayette 01165 A, US) 3 times at 30-second resting intervals in a sitting position. Interested kinematic and kinetic gait alterations were statistically compared with the paired statistical parametric mapping (SPM{t}) using MATLAB (p<0.05). The MIVMCF of knee-extensor muscles decreased by 15.59% (from 133.91 ± 59.89 N to 113.04 ± 46.35 N) in the AS period. No significant difference was observed between walking speeds (p=0.353). According to the SPM{t} analysis of the sagittal plane parameters of the knee between AS and BS, a significant difference was observed in the initial contact, loading response, and swing sub-phases. All interested gait parameters were compared in Table-1. Download : Download high-res image (255KB)Download : Download full-size image The stretching methodology was effective enough to temporarily reduce the MIVMCF of the knee extensors in children with SPC. As the first in the literature, the gait alterations of rectus femoris primered knee extensor muscle weakness in three planes were determined for children with SCP. As expected, the peak knee flexion and range improved in AS, although the peak knee flexion delay-related parameters did not significantly change. Although 2 of the 4 stiff knee parameters were improved, anterior pelvic tilt was not significantly reduced which may be related to stretching methodology partially involving other knee extensors such as three vastii. Therefore, this study demonstrated that, although the stretching methodology may be improved by surface EMG, it is capable to generate MIVMCF reduction to predict treatment on the knee extensors such as the application of neural agents or orthopedic surgery for SCPs.\",\"PeriodicalId\":94018,\"journal\":{\"name\":\"Gait & posture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gait & posture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gaitpost.2023.07.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

膝关节僵硬步态(SKG)是痉挛性脑瘫(SCP)患儿常见的步态异常(1)。股直肌(RF)是手术和神经干预治疗SKG最具针对性的方法(2,3)。据我们所知,在文献中没有研究调查射频肌无力对SPC患儿步态的暂时影响。人为减少股直肌引发的膝关节伸肌力量如何改变小儿SCP的步态生物力学?SCP患儿4例(GMFCS I-II级);3女性;2例双侧CP, 2例单侧CP;年龄:12.75±4.65岁,体重:37.50±12.44 kg,身高:143.88±16.15 cm。为了暂时降低射频最大等长随意肌收缩力(MIVMCF),进行了拉伸方案(135次sec×13重复,休息5秒)(4,5,6)。根据视觉模拟量表,将拉伸严重程度设置为7/10的不适程度。拉伸前(BS)和拉伸后(AS)分别使用三维步态分析系统(VICON, 6xVantage 5 + 2xAMTI力板)。采用手持式测功仪(Lafayette 01165 a, US)测量BS和AS两种状态下膝关节伸肌的MIVMCF,每隔30秒静息一次,测量3次。利用MATLAB将感兴趣的运动学和动力学步态改变与配对统计参数映射(SPM{t})进行统计学比较(p<0.05)。AS期间,膝关节伸肌MIVMCF从133.91±59.89 N下降到113.04±46.35 N,下降15.59%。行走速度之间无显著差异(p=0.353)。根据膝关节矢状面参数的SPM{t}分析,AS和BS在初始接触、加载响应和摆动分阶段均有显著差异。所有感兴趣的步态参数在表1中进行比较。拉伸方法足以有效地暂时降低SPC患儿膝关节伸肌的MIVMCF。在文献中首次测定了小儿SCP的股直肌引发的膝关节伸肌无力在三个平面的步态改变。正如预期的那样,As患者的膝关节峰值屈曲和范围得到改善,尽管膝关节峰值屈曲延迟相关参数没有显著变化。虽然4个膝关节僵硬参数中有2个得到改善,但骨盆前倾并没有明显减少,这可能与拉伸方法有关,部分涉及其他膝关节伸肌,如三个输尿管。因此,本研究表明,虽然拉伸方法可以通过表面肌电图得到改进,但它能够产生MIVMCF还原,以预测膝关节伸肌的治疗,如应用神经药物或对scp进行骨科手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How does artificially reduced rectus femoris primered knee extensor muscle force alters the gait biomechanics in children with cerebral palsy?
Stiff knee gait (SKG) is a common gait abnormality in children with spastic cerebral palsy (SCP) (1). The rectus femoris (RF) muscle is the most targeted treatment of SKG with surgical and neurological interventions (2,3). There is no study in the literature, as we are aware of, investigating the temporary effects of RF muscle weakness on gait in children with SPC. How does artificially reduced rectus femoris primered knee extensor muscle force alters the gait biomechanics of children with SCP? 4 children with SCP (GMFCS Level I-II; 3 females; 2 bilateral, 2 unilateral CP; age:12.75 ± 4.65 y.o., weight: 37.50 ± 12.44 kg, height: 143.88 ± 16.15 cm) were included in the study. To reduce the RF maximal isometric voluntary muscle contraction force (MIVMCF) temporarily, a stretching protocol (135 sec×13 repetitions with 5 sec. resting) was performed (4,5,6). Stretching severity is set as 7/10 discomfort level according to the visual analog scale. 3D gait analysis system (VICON, 6xVantage 5 + 2xAMTI force plates) was utilized before (BS) and after (AS) stretching. MIVMCF of knee-extensor muscles were measured in BS and AS conditions with a hand-held dynamometer (Lafayette 01165 A, US) 3 times at 30-second resting intervals in a sitting position. Interested kinematic and kinetic gait alterations were statistically compared with the paired statistical parametric mapping (SPM{t}) using MATLAB (p<0.05). The MIVMCF of knee-extensor muscles decreased by 15.59% (from 133.91 ± 59.89 N to 113.04 ± 46.35 N) in the AS period. No significant difference was observed between walking speeds (p=0.353). According to the SPM{t} analysis of the sagittal plane parameters of the knee between AS and BS, a significant difference was observed in the initial contact, loading response, and swing sub-phases. All interested gait parameters were compared in Table-1. Download : Download high-res image (255KB)Download : Download full-size image The stretching methodology was effective enough to temporarily reduce the MIVMCF of the knee extensors in children with SPC. As the first in the literature, the gait alterations of rectus femoris primered knee extensor muscle weakness in three planes were determined for children with SCP. As expected, the peak knee flexion and range improved in AS, although the peak knee flexion delay-related parameters did not significantly change. Although 2 of the 4 stiff knee parameters were improved, anterior pelvic tilt was not significantly reduced which may be related to stretching methodology partially involving other knee extensors such as three vastii. Therefore, this study demonstrated that, although the stretching methodology may be improved by surface EMG, it is capable to generate MIVMCF reduction to predict treatment on the knee extensors such as the application of neural agents or orthopedic surgery for SCPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信