Mustafa Zor, Ferhat Şen, Erdal Eroğlu, Zeki Candan
{"title":"功能化木质纤维素材料的三电特性和疏水特性","authors":"Mustafa Zor, Ferhat Şen, Erdal Eroğlu, Zeki Candan","doi":"10.5552/drvind.2023.0084","DOIUrl":null,"url":null,"abstract":"In the development of sustainable products, lignocellulosic materials with hydrophobic properties can be functionalized and used as reinforcement, especially in bio-composite materials, as well as in various applications such as packaging, water-repellent and self-renewing materials. This study is aimed to improve the surface properties and triboelectric properties of wood materials. Functionalized wood veneers were prepared by impregnating 3 different wood veneers (beech, mahogany and oak) with 5 different chemical solutions (cationic cellulose, cationic starch, polyethyleneimine, sodium alginate and carboxymethyl cellulose). Structural characterization of the functional wood materials obtained was investigated by Fourier-transform infrared spectroscopy (FT-IR) technique, wettability and surface properties were examined by contact angle measurements, and morphological properties were examined by scanning electron microscopy (SEM). The triboelectric properties of the devices prepared using functionalized wood materials were investigated. As a result, it was determined that the hydrophobic properties of wood materials were improved and showed triboelectric properties. It demonstrates that functionalized wood materials can be used to power low-power electronic devices.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":"96 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triboelektrična i hidrofobna svojstva funkcionaliziranih lignoceluloznih materijala\",\"authors\":\"Mustafa Zor, Ferhat Şen, Erdal Eroğlu, Zeki Candan\",\"doi\":\"10.5552/drvind.2023.0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the development of sustainable products, lignocellulosic materials with hydrophobic properties can be functionalized and used as reinforcement, especially in bio-composite materials, as well as in various applications such as packaging, water-repellent and self-renewing materials. This study is aimed to improve the surface properties and triboelectric properties of wood materials. Functionalized wood veneers were prepared by impregnating 3 different wood veneers (beech, mahogany and oak) with 5 different chemical solutions (cationic cellulose, cationic starch, polyethyleneimine, sodium alginate and carboxymethyl cellulose). Structural characterization of the functional wood materials obtained was investigated by Fourier-transform infrared spectroscopy (FT-IR) technique, wettability and surface properties were examined by contact angle measurements, and morphological properties were examined by scanning electron microscopy (SEM). The triboelectric properties of the devices prepared using functionalized wood materials were investigated. As a result, it was determined that the hydrophobic properties of wood materials were improved and showed triboelectric properties. It demonstrates that functionalized wood materials can be used to power low-power electronic devices.\",\"PeriodicalId\":11427,\"journal\":{\"name\":\"Drvna Industrija\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drvna Industrija\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5552/drvind.2023.0084\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5552/drvind.2023.0084","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Triboelektrična i hidrofobna svojstva funkcionaliziranih lignoceluloznih materijala
In the development of sustainable products, lignocellulosic materials with hydrophobic properties can be functionalized and used as reinforcement, especially in bio-composite materials, as well as in various applications such as packaging, water-repellent and self-renewing materials. This study is aimed to improve the surface properties and triboelectric properties of wood materials. Functionalized wood veneers were prepared by impregnating 3 different wood veneers (beech, mahogany and oak) with 5 different chemical solutions (cationic cellulose, cationic starch, polyethyleneimine, sodium alginate and carboxymethyl cellulose). Structural characterization of the functional wood materials obtained was investigated by Fourier-transform infrared spectroscopy (FT-IR) technique, wettability and surface properties were examined by contact angle measurements, and morphological properties were examined by scanning electron microscopy (SEM). The triboelectric properties of the devices prepared using functionalized wood materials were investigated. As a result, it was determined that the hydrophobic properties of wood materials were improved and showed triboelectric properties. It demonstrates that functionalized wood materials can be used to power low-power electronic devices.
期刊介绍:
"Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.