凯撒问题——一个零敲碎打的解决方案

IF 0.8 1区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE
J P Studd
{"title":"凯撒问题——一个零敲碎打的解决方案","authors":"J P Studd","doi":"10.1093/philmat/nkad006","DOIUrl":null,"url":null,"abstract":"Abstract The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of $X$s’ or $\\#X$ by stipulating the content of ‘unmixed’ identity contexts like ‘$\\#X = \\#Y$’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘$\\# X = \\text{Julius Caesar}$’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"77 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Caesar Problem — A Piecemeal Solution\",\"authors\":\"J P Studd\",\"doi\":\"10.1093/philmat/nkad006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of $X$s’ or $\\\\#X$ by stipulating the content of ‘unmixed’ identity contexts like ‘$\\\\#X = \\\\#Y$’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘$\\\\# X = \\\\text{Julius Caesar}$’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.\",\"PeriodicalId\":49004,\"journal\":{\"name\":\"Philosophia Mathematica\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/philmat/nkad006\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/philmat/nkad006","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

凯撒问题出现在抽象主义的观点中,它试图通过规定“未混合”的身份上下文的内容,如“$\#X = \#Y$”,来确保对诸如“$X$s的数量”或“$\#X$”等术语的引用。弗雷格反对说,这一规定没有提到“混合”上下文,如“$\# X = \text{Julius Caesar}$”。本文为对凯撒问题的一种被忽视的回应进行了辩护:混合上下文的内容与非混合上下文的内容一样可以规定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Caesar Problem — A Piecemeal Solution
Abstract The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of $X$s’ or $\#X$ by stipulating the content of ‘unmixed’ identity contexts like ‘$\#X = \#Y$’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘$\# X = \text{Julius Caesar}$’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophia Mathematica
Philosophia Mathematica HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
1.70
自引率
9.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信