{"title":"水稻光合特性、产量和氮素利用效率的基因型变异在不同氮水平下","authors":"Jaldhani V, Srikanth B, Suman K, Malathi S, Vishnukiran T, Neeraja CN, Subrahmanyam D, Sanjeeva Rao D, Chaitanya U, Ramulu K, Senguttuvel P, Anantha MS, Sai Prasad SV, Sundaram RM, Rao PR","doi":"10.58297/uszc7294","DOIUrl":null,"url":null,"abstract":"Nitrogen (N) is one of the yield limiting nutrients for rice. Unwarranted usage of N fertilizer to achieve higher crop returns is affecting environment and increasing the cost of cultivation. A field experiment was conducted under two differential N experimental plots (N-Low and N-Rec) to evaluate the effect of N on photosynthesis, grain yield and nitrogen use efficiency (NUE) of six rice genotypes belonging to three diverse groups. At N-Rec, Kolajoha3 exhibited highest mean SCMR value (43.2), flag leaf length (39.0 cm), flag leaf width (1.77 cm), flag leaf area (53.8 cm2 ), photosynthetic rate (19.50 µmol CO2 m-2 s-1),stomatal conductance (0.38 mol [H2 O] m-2 s-1),transpiration rate (10.72 mmol [H2 O] m-2 s-1). IC463254 recorded highest mean grain yield (621.5 g m-2), total dry matter (1302.5 g m-2), harvest index (47.7%), grain N uptake (84.4 kg ha-1) and nitrogen use efficiency (18.2). Significant reduction in growth, photosynthetic rate and yield of rice occurred under N-Low compared with N-Rec. In comparison N-Rec, Kolajoha3 exhibited least mean reduction in plant height (10.68%), photosynthetic rate (14.96%), productive tiller number (35.40%), grain yield (50.63%), straw yield (24.83%), total dry matter (36.03%), agronomic efficiency (14.6%) and NUE (26.21%) under N-Low, while IC463254 exhibited least mean reduction in SCMR value (14.11%) and flag leaf width (23.66%).","PeriodicalId":17022,"journal":{"name":"Journal of Rice Research and Developments","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotypic Variation in Photosynthetic Traits, Grain Yield and Nitrogen Use Efficiency in Rice (Oryza sativa L.) Under Differential Nitrogen Levels\",\"authors\":\"Jaldhani V, Srikanth B, Suman K, Malathi S, Vishnukiran T, Neeraja CN, Subrahmanyam D, Sanjeeva Rao D, Chaitanya U, Ramulu K, Senguttuvel P, Anantha MS, Sai Prasad SV, Sundaram RM, Rao PR\",\"doi\":\"10.58297/uszc7294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen (N) is one of the yield limiting nutrients for rice. Unwarranted usage of N fertilizer to achieve higher crop returns is affecting environment and increasing the cost of cultivation. A field experiment was conducted under two differential N experimental plots (N-Low and N-Rec) to evaluate the effect of N on photosynthesis, grain yield and nitrogen use efficiency (NUE) of six rice genotypes belonging to three diverse groups. At N-Rec, Kolajoha3 exhibited highest mean SCMR value (43.2), flag leaf length (39.0 cm), flag leaf width (1.77 cm), flag leaf area (53.8 cm2 ), photosynthetic rate (19.50 µmol CO2 m-2 s-1),stomatal conductance (0.38 mol [H2 O] m-2 s-1),transpiration rate (10.72 mmol [H2 O] m-2 s-1). IC463254 recorded highest mean grain yield (621.5 g m-2), total dry matter (1302.5 g m-2), harvest index (47.7%), grain N uptake (84.4 kg ha-1) and nitrogen use efficiency (18.2). Significant reduction in growth, photosynthetic rate and yield of rice occurred under N-Low compared with N-Rec. In comparison N-Rec, Kolajoha3 exhibited least mean reduction in plant height (10.68%), photosynthetic rate (14.96%), productive tiller number (35.40%), grain yield (50.63%), straw yield (24.83%), total dry matter (36.03%), agronomic efficiency (14.6%) and NUE (26.21%) under N-Low, while IC463254 exhibited least mean reduction in SCMR value (14.11%) and flag leaf width (23.66%).\",\"PeriodicalId\":17022,\"journal\":{\"name\":\"Journal of Rice Research and Developments\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rice Research and Developments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58297/uszc7294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rice Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58297/uszc7294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
氮(N)是水稻产量限制养分之一。为了获得更高的作物回报而不合理地使用氮肥正在影响环境并增加种植成本。在N- low和N- rec两个差异施氮试验区,研究了施氮对3个不同类群6个水稻基因型光合作用、产量和氮素利用效率的影响。在N-Rec条件下,Kolajoha3的平均SCMR值最高(43.2),旗叶长(39.0 cm),旗叶宽(1.77 cm),旗叶面积(53.8 cm2),光合速率(19.50µmol CO2 m-2 s-1),气孔导度(0.38 mol [H2 O] m-2 s-1),蒸腾速率(10.72 mmol [H2 O] m-2 s-1)。IC463254籽粒平均产量最高(621.5 g m-2),总干物质最高(1302.5 g m-2),收获指数最高(47.7%),籽粒吸氮量最高(84.4 kg hm -1),氮素利用效率最高(18.2)。与N-Rec相比,N-Low处理显著降低了水稻生长、光合速率和产量。与N-Rec相比,低氮处理下,Kolajoha3株高(10.68%)、光合速率(14.96%)、有效分蘖数(35.40%)、籽粒产量(50.63%)、秸秆产量(24.83%)、总干物质(36.03%)、农艺效率(14.6%)和氮素利用效率(26.21%)的平均降幅最小,IC463254的SCMR值(14.11%)和旗叶宽度(23.66%)的平均降幅最小。
Genotypic Variation in Photosynthetic Traits, Grain Yield and Nitrogen Use Efficiency in Rice (Oryza sativa L.) Under Differential Nitrogen Levels
Nitrogen (N) is one of the yield limiting nutrients for rice. Unwarranted usage of N fertilizer to achieve higher crop returns is affecting environment and increasing the cost of cultivation. A field experiment was conducted under two differential N experimental plots (N-Low and N-Rec) to evaluate the effect of N on photosynthesis, grain yield and nitrogen use efficiency (NUE) of six rice genotypes belonging to three diverse groups. At N-Rec, Kolajoha3 exhibited highest mean SCMR value (43.2), flag leaf length (39.0 cm), flag leaf width (1.77 cm), flag leaf area (53.8 cm2 ), photosynthetic rate (19.50 µmol CO2 m-2 s-1),stomatal conductance (0.38 mol [H2 O] m-2 s-1),transpiration rate (10.72 mmol [H2 O] m-2 s-1). IC463254 recorded highest mean grain yield (621.5 g m-2), total dry matter (1302.5 g m-2), harvest index (47.7%), grain N uptake (84.4 kg ha-1) and nitrogen use efficiency (18.2). Significant reduction in growth, photosynthetic rate and yield of rice occurred under N-Low compared with N-Rec. In comparison N-Rec, Kolajoha3 exhibited least mean reduction in plant height (10.68%), photosynthetic rate (14.96%), productive tiller number (35.40%), grain yield (50.63%), straw yield (24.83%), total dry matter (36.03%), agronomic efficiency (14.6%) and NUE (26.21%) under N-Low, while IC463254 exhibited least mean reduction in SCMR value (14.11%) and flag leaf width (23.66%).