Wen Gao, Fangyuan Wang, Meilin Ou, Qianqian Wu, Lei Wang, Haonan Zhu, Yuanyuan Li, Ning Kong, Jianping Qiu, Shanshan Hu, Shuang Song
{"title":"菊花形双金属NH2-MIL-53(Fe/Ti)光催化剂在可见光下对诺氟沙星的降解","authors":"Wen Gao, Fangyuan Wang, Meilin Ou, Qianqian Wu, Lei Wang, Haonan Zhu, Yuanyuan Li, Ning Kong, Jianping Qiu, Shanshan Hu, Shuang Song","doi":"10.1016/j.jece.2023.111050","DOIUrl":null,"url":null,"abstract":"The presence of elevated levels of norfloxacin (NOR) in the aquatic environment presents a serious risk to both human health and environmental organisms due to its extremely toxic and persistent characteristics. Herein, a series of Fe/Ti bimetallic composites (NH2-MIL-53(Fe/Ti)) were prepared using a one-step hydrothermal method to assess their capability for NOR degradation and investigate degradation mechanisms. It was observed that the well-organized nanosheets interconnected to form chrysanthemum clusters contained a significant number of exposed edges and open pores, which facilitated the enrichment of NOR. Notably, the optimum NH2-MIL-53(Fe/Ti) (1.5:1) demonstrated excellent degradation performance for NOR under visible light, owing to an electronic interaction between Fe3+ and Ti4+ metal centers. Efficient NOR degradation by NH2-MIL-53(Fe/Ti) (1.5:1) was achieved at 84.6% after 120 min of irradiation. Furthermore, the NH2-MIL-53(Fe/Ti) (1.5:1) maintained excellent reusability and stability even after five cycles tests. Active species trapping experiments confirmed that the pivotal role of •O2− and h+ in photodegradation of NOR pollutants. A plausible photocatalytic mechanism was suggested according to various performance characterization and experimental results. Defluorination and ring opening were the main degradation pathways. This work advanced our understanding of photogenerated carriers transfer and energy conversion in bimetallic MOFs. Additionally, a novel strategy was presented for visible light catalytic degradation of NOR, which were highly relevant for the field of environmental treatment.","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":7.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing degradation of norfloxacin using chrysanthemum-shaped bimetallic NH2-MIL-53(Fe/Ti) photocatalysts under visible light irradiation\",\"authors\":\"Wen Gao, Fangyuan Wang, Meilin Ou, Qianqian Wu, Lei Wang, Haonan Zhu, Yuanyuan Li, Ning Kong, Jianping Qiu, Shanshan Hu, Shuang Song\",\"doi\":\"10.1016/j.jece.2023.111050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of elevated levels of norfloxacin (NOR) in the aquatic environment presents a serious risk to both human health and environmental organisms due to its extremely toxic and persistent characteristics. Herein, a series of Fe/Ti bimetallic composites (NH2-MIL-53(Fe/Ti)) were prepared using a one-step hydrothermal method to assess their capability for NOR degradation and investigate degradation mechanisms. It was observed that the well-organized nanosheets interconnected to form chrysanthemum clusters contained a significant number of exposed edges and open pores, which facilitated the enrichment of NOR. Notably, the optimum NH2-MIL-53(Fe/Ti) (1.5:1) demonstrated excellent degradation performance for NOR under visible light, owing to an electronic interaction between Fe3+ and Ti4+ metal centers. Efficient NOR degradation by NH2-MIL-53(Fe/Ti) (1.5:1) was achieved at 84.6% after 120 min of irradiation. Furthermore, the NH2-MIL-53(Fe/Ti) (1.5:1) maintained excellent reusability and stability even after five cycles tests. Active species trapping experiments confirmed that the pivotal role of •O2− and h+ in photodegradation of NOR pollutants. A plausible photocatalytic mechanism was suggested according to various performance characterization and experimental results. Defluorination and ring opening were the main degradation pathways. This work advanced our understanding of photogenerated carriers transfer and energy conversion in bimetallic MOFs. Additionally, a novel strategy was presented for visible light catalytic degradation of NOR, which were highly relevant for the field of environmental treatment.\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jece.2023.111050\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jece.2023.111050","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhancing degradation of norfloxacin using chrysanthemum-shaped bimetallic NH2-MIL-53(Fe/Ti) photocatalysts under visible light irradiation
The presence of elevated levels of norfloxacin (NOR) in the aquatic environment presents a serious risk to both human health and environmental organisms due to its extremely toxic and persistent characteristics. Herein, a series of Fe/Ti bimetallic composites (NH2-MIL-53(Fe/Ti)) were prepared using a one-step hydrothermal method to assess their capability for NOR degradation and investigate degradation mechanisms. It was observed that the well-organized nanosheets interconnected to form chrysanthemum clusters contained a significant number of exposed edges and open pores, which facilitated the enrichment of NOR. Notably, the optimum NH2-MIL-53(Fe/Ti) (1.5:1) demonstrated excellent degradation performance for NOR under visible light, owing to an electronic interaction between Fe3+ and Ti4+ metal centers. Efficient NOR degradation by NH2-MIL-53(Fe/Ti) (1.5:1) was achieved at 84.6% after 120 min of irradiation. Furthermore, the NH2-MIL-53(Fe/Ti) (1.5:1) maintained excellent reusability and stability even after five cycles tests. Active species trapping experiments confirmed that the pivotal role of •O2− and h+ in photodegradation of NOR pollutants. A plausible photocatalytic mechanism was suggested according to various performance characterization and experimental results. Defluorination and ring opening were the main degradation pathways. This work advanced our understanding of photogenerated carriers transfer and energy conversion in bimetallic MOFs. Additionally, a novel strategy was presented for visible light catalytic degradation of NOR, which were highly relevant for the field of environmental treatment.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.